Estimation of Relative Pollen Productivity in Alpine Desert Steppe of Western Tibetan Plateau

  • Yue LI ,
  • Ying WANG ,
  • Yuecong LI ,
  • Ruchun ZHANG ,
  • Linyuan MA ,
  • Hanfei YOU ,
  • Rongrong WANG ,
  • Yihang CAO ,
  • Qinghai XU
Expand
  • 1.School of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China
    2.Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang 050024, China
    3.Institute of Geographical Science, Hebei Academy of Sciences, Shijiazhuang 050011, China
    4.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
LI Yue, research area includes surface pollen in the Tibetan Plateau. E-mail: 19831120190@163.com
XU Qinghai, research area includes palynology and paleo-environment. E-mail: xuqinghai@hebtu.edu.cn

Received date: 2024-06-21

  Revised date: 2024-09-26

  Online published: 2025-01-17

Supported by

the Basic Science Center of Tibetan Plateau Earth System(41988101);The National Natural Science Foundation of China(U20A20116)

Abstract

Ngari is a unique desert steppe type on the Tibetan Plateau, characterized by its desert steppe ecosystem. This region serves as an ideal representation for studying the quantitative relationships between vegetation and climate. Relative Pollen Productivity (RPP) and Relevant Source Area of Pollen (RSAP) are important parameters for quantitative studies of vegetation and climate based on pollen. Based on modern topsoil pollen and vegetation data from 37 sample sites in the Ngari Desert steppe, different sub-models of the ERV model were utilized, with Chenopodiaceae pollen as the reference species, to estimate the relative pollen production and relevant source area of pollen for five major pollen types: Poaceae, Chenopodiaceae, Artemisia, Asteraceae, Brassicaceae, and Potentilla. The results showed that sub-model 2 provided optimal estimates. The relevant source of pollen in the study area was 1 550 m. The relative pollen productivities of the main pollen types are as follows:Chenopodiaceae (=1.000), Artemisia (1.286±0.058), Asteraceae (0.689±0.043), Brassicaceae (0.763±0.063), Potentilla (0.139±0.008), and Poaceae (0.003±0.006). The results of the leave-one-out method and the REVEALS model validation indicate that the above RPP and RSAP results are reliable and can be applied to regional vegetation reconstruction.

Cite this article

Yue LI , Ying WANG , Yuecong LI , Ruchun ZHANG , Linyuan MA , Hanfei YOU , Rongrong WANG , Yihang CAO , Qinghai XU . Estimation of Relative Pollen Productivity in Alpine Desert Steppe of Western Tibetan Plateau[J]. Advances in Earth Science, 2024 , 39(11) : 1169 -1182 . DOI: 10.11867/j.issn.1001-8166.2024.086

References

1 CASPERSEN J P, PACALA S W, JENKINS J C, et al. Contributions of land-use history to carbon accumulation in U. S. forests[J]. Science, 2000, 290(5 494): 1 148-1 151.
2 XU Qinghai, LI Manyue, ZHANG Shengrui, et al. Modern pollen processes of China: progress and problems[J]. Science China: Earth Sciences, 2015, 58: 1 661-1 682.
2 许清海, 李曼玥, 张生瑞, 等. 中国第四纪花粉现代过程: 进展与问题[J]. 中国科学: 地球科学, 2015, 45(11): 1 661-1 682.
3 WANG Yexing, XU Qinghai, ZHANG Shengrui, et al. Relative pollen productivity estimates and landcover reconstruction of desert steppe in arid western China: an example in Barkol Basin[J]. Quaternary Sciences, 2021, 41(6): 1 738-1 748.
3 王叶星, 许清海, 张生瑞, 等. 中国西部干旱区荒漠草原相对花粉产量估算和土地覆被重建: 以新疆巴里坤盆地为例[J]. 第四纪研究, 2021, 41(6): 1 738-1 748.
4 WANG Kaifa, WANG Xianzeng. An introduction to palynology[M]. Beijing: Peking University Press, 1983.
4 王开发, 王宪曾. 孢粉学概论[M]. 北京: 北京大学出版社, 1983.
5 LI Wenyi. Quaternary vegetation and environment in China[M]. Beijing: Science Press, 1998.
5 李文漪. 中国第四纪植被与环境[M]. 北京: 科学出版社, 1998.
6 PRENTICE I C, WEBB T III. Pollen percentages, tree abundances and the Fagerlind effect[J]. Journal of Quaternary Science, 1986, 1(1): 35-43.
7 BROSTR?M A, NIELSEN A B, GAILLARD M J, et al. Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review[J]. Vegetation History and Archaeobotany, 2008, 17(5): 461-478.
8 SUGITA S, GAILLARD M J, BROSTR?M A. Landscape openness and pollen records: a simulation approach[J]. The Holocene, 1999, 9(4) : 409-421.
9 PRENTICE I C. Pollen representation, source area, and basin size: toward a unified theory of pollen analysis[J]. Quaternary Research, 1985, 23(1): 76-86.
10 BROSTR?M A, SUGITA S, GAILLARD M J. Pollen productivity estimates for the reconstruction of past vegetation cover in the cultural landscape of southern Sweden[J]. The Holocene, 2004, 14(3): 368-381.
11 ANDERSEN S T. The relative pollen productivity and pollen representation of North European trees, and correction factors for tree pollen spectra. Determined by surface pollen analyses from forests[J]. Danmarks Geologiske Unders?gelse II R?kke, 1970, 96: 1-99.
12 PARSONS R W, PRENTICE I C. Statistical approaches to R-values and the pollen—vegetation relationship[J]. Review of Palaeobotany and Palynology, 1981, 32(2/3): 127-152.
13 PRENTICE I C, PARSONS R W. Maximum likelihood linear calibration of pollen spectra in terms of forest composition[J]. Biometrics, 1983, 39(4): 1051-1057.
14 SUGITA S. Pollen representation of vegetation in quaternary sediments: theory and method in patchy vegetation[J]. The Journal of Ecology, 1994, 82(4): 881-897.
15 SUGITA S. Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition[J]. The Holocene, 2007, 17(2): 229-241.
16 SUGITA S. Theory of quantitative reconstruction of vegetation II: all you need is LOVE[J]. The Holocene, 2007, 17(2): 243-257.
17 HJELLE K L. Modern pollen assemblages from mown and grazed vegetation types in western Norway[J]. Review of Palaeobotany and Palynology, 1999, 107(1/2): 55-81.
18 BUNTING M J, SCHOFIELD J E, EDWARDS K J. Estimates of Relative Pollen Productivity (RPP) for selected taxa from southern Greenland: a pragmatic solution[J]. Review of Palaeobotany and Palynology, 2013, 190: 66-74.
19 BUNTING M J, ARMITAGE R, BINNEY H A, et al. Estimates of ‘relative pollen productivity’ and‘relevant source area of pollen’ for major tree taxa in two Norfolk (UK) woodlands[J]. The Holocene, 2005, 15(3): 459-465.
20 MAZIER F, BROSTR?M A, GAILLARD M J, et al. Pollen productivity estimates and relevant source area of pollen for selected plant taxa in a pasture woodland landscape of the Jura Mountains (Switzerland)[J]. Vegetation History and Archaeobotany, 2008, 17(5): 479-495.
21 POSKA A, MELTSOV V, SUGITA S, et al. Relative pollen productivity estimates of major anemophilous taxa and relevant source area of pollen in a cultural landscape of the hemi-boreal forest zone (Estonia)[J]. Review of Palaeobotany and Palynology, 2011, 167(1/2): 30-39.
22 CHAPUT M A, GAJEWSKI K. Relative pollen productivity estimates and changes in Holocene vegetation cover in the deciduous forest of southeastern Québec, Canada[J]. Botany, 2018, 96(5): 299-317.
23 NIEMEYER B, KLEMM J, PESTRYAKOVA L A, et al. Relative pollen productivity estimates for common taxa of the northern Siberian Arctic[J]. Review of Palaeobotany and Palynology, 2015, 221: 71-82.
24 DUFFIN K I, BUNTING M J. Relative pollen productivity and fall speed estimates for southern African savanna taxa[J]. Vegetation History and Archaeobotany, 2008, 17(5): 507-525.
25 XU Qinghai, CAO Xianyong, FANG TIAN, et al. Relative pollen productivities of typical steppe species in northern China and their potential in past vegetation reconstruction[J]. Science China: Earth Science, 2013, 43(12): 2 016-2 028.
25 许清海, 曹现勇, FANG TIAN, 等. 中国北方典型草原区花粉产量及其定量重建古植被的作用[J]. 中国科学: 地球科学, 2013, 43(12): 2 016-2 028.
26 GE Yawen, LI Yuecong, LI Ying, et al. Relevant source area of pollen and relative pollen productivity estimates in Bashang steppe[J]. Quaternary Sciences, 2015, 35(4): 934-945.
26 葛亚汶, 李月丛, 李英, 等. 坝上草原相关花粉源范围与相对花粉产量估算[J]. 第四纪研究, 2015, 35(4): 934-945.
27 ZHANG Panpan, XU Qinghai, GAILLARD M J, et al. Research of main plant species’s relative pollen productivities and relevant source area of temperate coniferous and broad-leaved mixed forest in northern China[J]. Quaternary Sciences, 2017, 37(6): 1 429-1 443.
27 张攀攀, 许清海, GAILLARD Marie-jose, 等. 中国北方温带针阔叶混交林主要植物相对花粉产量和相关花粉源范围研究[J]. 第四纪研究, 2017, 37(6): 1 429-1 443.
28 JIANG F Y, XU Q H, ZHANG S R, et al. Relative pollen productivities of the major plant taxa of subtropical evergreen-deciduous mixed woodland in China[J]. Journal of Quaternary Science, 2020, 35(4): 526-538.
29 WAN Q C, ZHANG Y Z, HUANG K Y, et al. Evaluating quantitative pollen representation of vegetation in the tropics: a case study on the Hainan Island, tropical China[J]. Ecological Indicators, 2020, 114. DOI: 10.1016/j.ecolind.2020 .
30 WANG Y B, HERZSCHUH U. Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model[J]. Review of Palaeobotany and Palynology, 2011, 168(1): 31-40.
31 QIN F, BUNTING M J, ZHAO Y, et al. Relative pollen productivity estimates for alpine meadow vegetation, northeastern Tibetan Plateau[J]. Vegetation History Archaeobotany, 2020, 29(4): 447-462.
32 LI D H, XU Q H, LI Y W, et al. Relative pollen productivity estimates for alpine meadow in the Qinghai-Tibet Plateau and their potential significance for paleovegetation reconstruction[J]. Quaternary International, 2022, 641: 115-121.
33 HICKS S. The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal[J]. Review of Palaeobotany and Palynology, 2001, 117(1/2/3): 1-29.
34 LI F R, GAILLARD M J, XU Q H, et al. A review of relative pollen productivity estimates from temperate China for pollen-based quantitative reconstruction of past plant cover[J]. Frontiers in Plant Science, 2018, 9. DOI: 10.3389/fpls.2018.01214 .
35 DAMIALIS A, HALLEY J M, GIOULEKAS D, et al. Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece[J]. Atmospheric Environment, 2007, 41(33): 7 011-7 021.
36 LAN Xiaoyu, YANG Dong, MIAO Yunfa, et al. Characteristics and influencing factors of airborne pollen assemblage in eastern Hexi Corridor from 2019 to 2022[J]. Advances in Earth Science, 2023, 38(6): 631-643.
36 蓝小玉, 杨东, 苗运法, 等. 河西走廊东部2019—2022年空气孢粉组合特征及影响因素[J]. 地球科学进展, 2023, 38(6): 631-643.
37 Tibet Bureau of Statistic. The Xizang statistical year book[M]. Beijing: China Statistics Press, 2020.
37 西藏自治区统计局. 西藏统计年鉴[M]. 北京: 中国统计出版社, 2020.
38 ZHANG Xinshi. Vegetation map of the people’s republic of China (1∶1 000 000)[M]. Beijing: Geology Press, 2007.
38 张新时. 中华人民共和国植被图(1∶1 000 000)[M]. 北京: 地质出版社, 2007.
39 BUNTING M J, FARRELL M, BROSTR?M A, et al. Palynological perspectives on vegetation survey: a critical step for model-based reconstruction of quaternary land cover[J]. Quaternary Science Reviews, 2013, 82: 41-55.
40 MIDDLETON R. Vegetation Survey Manager v 2.0[Z]. 2011.
41 Institute of Botany, Chinese Academy of Sciences, Changchun Institute of Geography. Xizang vegetation[M]. Beijing: Science Press, 1988.
41 中国科学院植物研究所, 中国科学院长春地理研究所. 西藏植被[M]. 北京: 科学出版社, 1988.
42 STOCKMARR J. Tablets with spores used in absolute pollen analysis[J]. Pollen et Spores, 1971, 13: 615-621.
43 FAEGRI K, KALAND P E, KRZYWINSKI K. Textbook of pollen analysis[M]. Oxford: John Wiley and Sons Ltd., 1989.
44 WANG Fuxiong. Pollen flora of China[M]. 2nd ed. Beijing: Science Press, 1995.
44 王伏雄. 中国植物花粉形态[M]. 2版. 北京: 科学出版社, 1995.
45 TANG Lingyu. An illustrated handbook of quaternary pollen and spores in China[M]. Beijing: Science Press, 2016.
45 唐领余. 中国第四纪孢粉图鉴[M]. 北京: 科学出版社, 2016.
46 GRIMM E C. TILIA 1.7.16 Software[Z]. Springfield: Illinois State Museum, Research and Collection Center, 2011.
47 GREGORY P H. Distribution of airborne pollen and spores and their long distance transport[J]. Pure and Applied Geophysics, 1978, 116(2): 309-315.
48 SAMMUT C. Encyclopedia of machine learning and data mining [M]. New York, NY: Springer, 2017.
49 FENG Qisheng, GAO Xinhua. Application of Excel in the experiment teaching of leave-one-out cross validation[J]. Experiment Science and Technology, 2015, 13(2): 49-51, 65.
49 冯琦胜, 高新华. Excel在留一法交叉验证实验教学中的作用[J]. 实验科学与技术, 2015, 13(2): 49-51, 65.
50 QI Ji. A comparative study on goodness of fit based on leave-one-out cross-validation[D]. Jinan: Shandong University, 2022.
50 齐霁. 基于留一交叉验证的拟合优度比较研究[D]. 济南: 山东大学, 2022.
51 TRONDMAN A K, GAILLARD M J, SUGITA S, et al. Are pollen records from small sites appropriate for REVEALS model-based quantitative reconstructions of past regional vegetation? An empirical test in southern Sweden[J]. Vegetation History and Archaeobotany, 2016, 25(2): 131-151.
52 CAO Xianyong, TIAN Fang, XU Qinghai, et al. Modern pollen dataset for Asia[DS/OL]. Beijing: National Tibetan Plateau/Third Pole Environment Data Center, 2022(2022-05-21)[2024-10-14]. .
52 曹现勇,田芳,许清海,等. 亚洲现代花粉数据集[DS/OL] 北京:国家青藏高原数据中心,2022 (2022-05-21)[2024-10-14]. .
53 BROSTR?M A, SUGITA S, GAILLARD M J, et al. Estimating the spatial scale of pollen dispersal in the cultural landscape of southern Sweden[J]. The Holocene, 2005, 15(2): 252-262.
54 CHENG Jie. Response of grassland vegetations distribution to climate change in Loess Plateau[D]. Yangling: Northwest A & F University, 2011.
54 程杰. 黄土高原草地植被分布与气候响应特征[D]. 杨凌: 西北农林科技大学, 2011.
55 LIU H Y, CUI H T, POTT R, et al. The surface pollen of the woodland-steppe ecotone in southeastern Inner Mongolia, China[J]. Review of Palaeobotany and Palynology, 1999, 105(3/4): 237-250.
56 LI Yuecong, XU Qinghai, YANG Xiaolan, et al. Pollen assemblages of major steppe communities in China[J]. Acta Ecologica Sinica, 2005, 25(3): 555-564.
56 李月丛, 许清海, 阳小兰, 等. 中国草原区主要群落类型花粉组合特征[J]. 生态学报, 2005, 25(3): 555-564.
57 XU Qinghai, ZHANG Shengrui. Advance in pollen source area[J]. Advances in Earth Science, 2013, 28(9): 968-975.
57 许清海, 张生瑞. 花粉源范围研究进展[J]. 地球科学进展, 2013, 28(9): 968-975.
58 SUGITA S. A model of pollen source area for an entire lake surface[J]. Quaternary Research, 1993, 39(2): 239-244.
59 COMMERFORD J L, MCLAUCHLAN K K, SUGITA S. Calibrating vegetation cover and grassland pollen assemblages in the flint hills of Kansas, USA[J]. American Journal of Plant Sciences, 2013, 4(7): 1-10.
60 HUANG Rong, XU Qinghai, TIAN Fang, et al. Re-estimated relative pollen productivity of typical steppe and meadow steppe in Inner Mongolia[J]. Quaternary Sciences, 2021, 41(6): 1 727-1 737.
60 黄荣, 许清海, 田芳, 等. 内蒙古典型草原和草甸草原相对花粉产量重估[J]. 第四纪研究, 2021, 41(6): 1 727-1 737.
61 LI Y C, BUNTING M J, XU Q H, et al. Pollen-vegetation-climate relationships in some desert and desert-steppe communities in northern China[J]. The Holocene, 2011, 21(6): 997-1 010.
62 HE Fei, LI Yiyin, WU Jing, et al. A comparison of relative pollen productivity from forest steppe, typical steppe and desert steppe in Inner Mongolia[J]. Chinese Science Bulletin, 2016, 61(31): 3 388-3 400.
62 何飞, 李宜垠, 伍婧, 等. 内蒙古森林草原—典型草原—荒漠草原的相对花粉产量对比[J]. 科学通报, 2016, 61(31): 3 388-3 400.
63 Institute of Botany, Chinese Academy of Sciences. Illustration of Chinese higher plants-volume 5[M]. Beijing: Science Press, 1976.
63 中国科学院北京植物研究所. 中国高等植物图鉴—第五册[M]. 北京: 科学出版社, 1976.
64 BUNTING M J, TIPPING R. Sorting dross from data: possible indicators of post-depositional assemblage biasing in archaeological palynology[C]// BAILEY G, CHARLES R, WINDER N. Human ecodynamics. Oxford: Oxbow Books, 2000: 63-69.
65 BUNTING M J, HJELLE K L. Effect of vegetation data collection strategies on estimates of Relevant Source Area of Pollen (RSAP) and relative pollen productivity estimates (relative PPE) for non-arboreal taxa[J]. Vegetation History and Archaeobotany, 2010, 19(4): 365-374.
Outlines

/