Spheroidal Carbonaceous Particle Deposition Records Revealing Human Industrial Activities: Research History, Advances, and Prospects

  • Hanfei YANG ,
  • Qiuyi CHEN ,
  • Xuhui DONG ,
  • Xu CHEN
Expand
  • 1.School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China
    2.Centre for Climate and Environmental Changes, Guangzhou University, Guangzhou 510006, China
    3.School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China
YANG Hanfei, Postdoctor, research areas include evolution of lake ecosystems and global changes, quaternary climate and geological environment, geochemistry. E-mail: yanghanfei@gzhu.edu.cn
DONG Xuhui, Professor, research areas include water ecological protection and modern environmental evolution. E-mail: xhdong@gzhu.edu.cn

Received date: 2024-04-16

  Revised date: 2024-06-15

  Online published: 2024-07-29

Supported by

the National Natural Science Foundation of China(42171149);Internal Research Projects at Guangzhou University(YJ2023031)

Abstract

In the context of the Anthropocene crisis, studying the impact of human activities on the Earth's ecological environment is crucial. Spheroidal Carbonaceous Particles (SCPs), novel markers of human activity in geological records, originate from the incomplete combustion of fossil fuels at high industrial temperatures. With advancements in global industrialization, SCPs research and applications have become increasingly important. This study systematically reviews the research history and characteristics of SCPs, highlighting their stable chemical properties, unique morphological features, and easy accessibility, which make them a unique component of black carbon research. It then summarizes the significant applications of SCPs in reflecting regional environmental pollution, aiding in sediment dating and tracing atmospheric pollution sources. This study also identified the shortcomings of SCPs research, such as human error in identification, the relative scarcity of research records in the Southern Hemisphere and outside lakes, unclear potential hazards in ecosystems, and the influence of various factors on their application in sediment dating. In the future, it will be necessary to establish identification and reference standards for SCPs using online databases; explore their ecological and environmental significance in recording human activities on a global scale; and determine stable, reliable, and comparable regional SCP chronologies to further refine and deepen the current research.

Cite this article

Hanfei YANG , Qiuyi CHEN , Xuhui DONG , Xu CHEN . Spheroidal Carbonaceous Particle Deposition Records Revealing Human Industrial Activities: Research History, Advances, and Prospects[J]. Advances in Earth Science, 2024 , 39(7) : 685 -701 . DOI: 10.11867/j.issn.1001-8166.2024.054

References

1 IPCC. AR6 synthesis report: climate change 2023[M]// LEE H, ROMERO J. Intergovernmental panel on climate change. Switzerland, 2023.
2 ZHOU Weijian, ZHAO Xue, CHEN Ning. New progress in the Anthropocene science in China[J]. Advances in Earth Science, 2024, 39(1): 1-11.
2 周卫健, 赵雪, 陈宁.中国人类世科学研究新进展[J]. 地球科学进展, 2024, 39(1): 1-11.
3 IEA. World energy outlook 2022: CC BY 4.0[R]. Paris: International Energy Agency, 2022.
4 ROSE N L. Spheroidal carbonaceous fly ash particles in the anthropocene[M]// Encyclopedia of the Anthropocene. Amsterdam: Elsevier, 2018: 189-195.
5 LEFèVRE R, GAUDICHET A, BILLON-GALLAND M A. Silicate microspherules intercepted in the plume of Etna volcano[J]. Nature, 1986, 322: 817-820.
6 HODGE P W, WRIGHT F W. Studies of particles for extraterrestrial origin: 2. a comparison of microscopic spherules of meteoritic and volcanic origin[J]. Journal of Geophysical Research, 1964, 69(12): 2 449-2 454.
7 HANDY R, DAVIDSON D. On the curious resemblance between fly ash and meteoritic dust[J]. Proceedings of the Iowa Academy of Science, 1953, 60(1): 373-379.
8 ADACHI K, CHUNG S H, BUSECK P R. Shapes of soot aerosol particles and implications for their effects on climate[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D15). DOI: 10.1029/2009JD012868 .
9 ROSE N L. Spheroidal carbonaceous fly ash particles provide a globally synchronous stratigraphic marker for the Anthropocene[J]. Environmental Science & Technology, 2015, 49(7): 4 155-4 162.
10 SWINDLES G T, WATSON E, TURNER T E, et al. Spheroidal carbonaceous particles are a defining stratigraphic marker for the Anthropocene[J]. Scientific Reports, 2015, 5(1): 10264. DOI:10.1038/srep10264 .
11 WATERS C N, TURNER S D. Defining the onset of the Anthropocene[J]. Science, 2022, 378(6 621): 706-708.
12 RUPPEL M, LUND M T, GRYTHE H, et al. Comparison of spheroidal carbonaceous particle data with modelled atmospheric black carbon concentration and deposition and air mass sources in northern Europe, 1850-2010[J]. Advances in Meteorology, 2013. DOI:10.1155/2013/393926 .
13 CHARLES D F, BINFORD M W, FURLONG E T, et al. Paleoecological investigation of recent lake acidification in the Adirondack Mountains, N.Y.[J]. Journal of Paleolimnology, 1990, 3(3): 195-241.
14 PUNNING J M, KOFF T, VARVAS M, et al. Impact of natural and man-made processes on the development of Lake Linaj?rv, NE Estonia[J]. Proceedings of the Estonian Academy of Sciences, Ecology, 1994, 4(4): 156-174.
15 TOLONEN K, HAPALAHTI R, SUKSI J. Comparison of varve dated soot ball chronology and lead 210 dating in Finland[J]. Geological Survey of Finland, 1990, 14: 65-75.
16 RENBERG I, WIK M. Dating recent lake sediments by soot particle counting[J]. SIL Proceedings, 1922-2010, 1984, 22(2): 712-718.
17 RENBERG I, WIK M. Soot particle counting in recent lake sediments an indirect dating method[J]. Ecological Bulletins, 1985(37): 53-57.
18 HILGERS E, THIES H, KALBFUS W. A lead-210 dated sediment record on heavy metals, polycyclic aromatic hydrocarbons and soot spherules for a dystrophic mountain lake[J]. SIL Proceedings, 1922-2010, 1993, 25(2): 1 091-1 094.
19 GRIFFIN J J, GOLDBERG E D. The fluxes of elemental carbon in coastal marine sediments[J]. Limnology and Oceanography, 1975, 20(3): 456-463.
20 GRIFFIN J J, GOLDBERG E D. Morphologies and origin of elemental carbon in the environment[J]. Science, 1979, 206(4 418): 563-565.
21 ROSE N L. A method for the selective removal of inorganic ash particles from lake sediments[J]. Journal of Paleolimnology, 1990, 4(1): 61-67.
22 GUILIZZONI P, LAMI A, MARCHETTO A. Plant pigment ratios from lakes sediments as indicators of recent acidification in alpine lakes[J]. Limnology and Oceanography, 1992, 37(7): 1 565-1 569.
23 WIK M, RENBERG I, DARLEY J. Sedimentary records of carbonaceous particles from fossil fuel combustion[J]. Hydrobiologia, 1986, 143(1): 387-394.
24 KOTHARI B K, WAHLEN M. Concentration and surface morphology of charcoal particles in sediments of Green Lake, N.Y.: implications regarding the use of energy in the past[J]. Northeastern Environmental Science, 1984, 3: 24-29.
25 DOUBLEDAY B, COLLEEN N. A paleolimnological survey of combustion particles from lakes and ponds in the eastern Arctic, Nunavut, Canada[D]. Nunavut: Queen’s University, 1999.
26 PUNNING J M, BOYLE J F, ALLIKSAAR T, et al. Human impact on the history of Lake N?mmej?rv, NE Estonia: a geochemical and palaeobotanical study[J]. The Holocene, 1997, 7(1): 91-99.
27 KORHOLA A, VIRKANEN J, TIKKANEN M, et al. Fire-induced pH rise in a naturally acid hill-top lake, southern Finland: a palaeoecological survey[J]. The Journal of Ecology, 1996, 84(2): 257-265.
28 KORHOLA A, BLOM T. Marked early 20th century pollution and the subsequent recovery of T??l? Bay, central Helsinki, as indicated by subfossil diatom assemblage changes[J]. Hydrobiologia, 1996, 341(2): 169-179.
29 LAN Y L, BRESLIN V T. Sedimentary records of spheroidal carbonaceous particles from fossil-fuel combustion in western Lake Ontario[J]. Journal of Great Lakes Research, 1999, 25(3): 443-454.
30 ODGAARD B V. The sedimentary record of spheroidal carbonaceous fly-ash particles in shallow Danish Lakes[J]. Journal of Paleolimnology, 1993, 8(3): 171-187.
31 RENBERG I, HULTBERG H. A paleolimnological assessment of acidification and liming effects on diatom assemblages in a Swedish Lake[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49(1): 65-72.
32 ROSE N L, HARLOCK S. The spatial distribution of characterised fly-ash particles and trace metals in lake sediments and catchment mosses in the United Kingdom[J]. Water, Air, and Soil Pollution, 1998, 106(3): 287-308.
33 ROSE N L, HARLOCK S. Within-basin profile variability and cross-correlation of lake sediment cores using the spheroidal carbonaceous particle record[J]. Journal of Paleolimnology, 1999, 21(1): 85-96.
34 ROSE N L, HARLOCK S, APPLEBY P G, et al. Dating of recent lake sediments in the United Kingdom and Ireland using Spheroidal Carbonaceous Particle (SCP) concentration profiles[J]. The Holocene, 1995, 5(3): 328-335.
35 VIRKANEN J, KORHOLA A, TIKKANEN M, et al. Recent environmental changes in a naturally acidic rocky lake in southern Finland, as reflected in its sediment geochemistry and biostratigraphy[J]. Journal of Paleolimnology, 1997, 17(2): 191-213.
36 WIK M, RENBERG I. Environmental records of carbonaceous fly-ash particles from fossil-fuel combustion[J]. Journal of Paleolimnology, 1996, 15(3): 193-206.
37 INOUE J, TAKENAKA N, OKUDAIRA T, et al. The record of sedimentary Spheroidal Carbonaceous Particles (SCPs) in Beppu Bay, southern Japan, compared to historical trends of industrial activity and atmospheric pollution: further evidence for SCPs as a marker for Anthropocene industrialization[J]. The Anthropocene Review, 2023, 10(2): 541-555.
38 ROSE N L, JUGGINS S, WATT J. The characterisation of carbonaceous fly-ash particles from major European fossil-fuel types and applications to environmental samples[J]. Atmospheric Environment, 1999, 33(17): 2 699-2 713.
39 LANDERS D H, SIMONICH S M, JAFFE D A, et al. The Fate, Transport, and Ecological Impacts of Airborne Contaminants in Western National Parks (USA): EPA/600/R-07/138[R]. Corvallis, Oregon: U.S. Environmental Protection Agency, Office of Research and Development, NHEERL, Western Ecology Division, 2008.
40 WU Yanhong, WANG Sumin, XIA Weilan, et al. Dating of Spherical Carbon Particles (SCP) in modern lake sediments[J]. Chinese Science Bulletin, 2005, 50(7): 703-707.
40 吴艳宏, 王苏民, 夏威岚, 等. 近代湖泊沉积物球状碳颗粒(SCP)定年[J]. 科学通报, 2005, 50(7): 703-707.
41 LENG Xue, WU Shuang, WANG Xinmei, et al. 137Cs buildup, dating, and tuning for the recent lake sediment in Huangmaooan lake, Jiangxi, south China[J]. Oceanologia et Limnologia Sinica, 2017, 48(5): 944-951.
41 冷雪, 吴霜, 王昕梅, 等. 赣北黄茅潭近代湖泊137Cs蓄积特点、SCP计数和事件性沉积及其对210Pb计年的矫正[J]. 海洋与湖沼, 2017, 48(5): 944-951.
42 ZENG L, NING D, MAO X, et al. A 60-year sedimentary record of heavy metal pollution in Sanliqi Lake in Daye City[J]. Journal of Earth Environment, 2014, 5(4): 252-260.
43 CAO Y M, ZHANG E L, LANGDON P, et al. Spatially different nutrient histories recorded by multiple cores and implications for management in Taihu Lake, Eastern China[J]. Chinese Geographical Science, 2013, 23(5): 537-549.
44 CHEN X, QIAO Q L, McGOWAN S, et al. Determination of geochronology and sedimentation rates of shallow lakes in the middle Yangtze reaches using 210Pb, 137Cs and spheroidal carbonaceous particles[J]. CATENA, 2019, 174: 546-556.
45 CHEN X, LI C G, McGOWAN S, et al. Diatom response to heavy metal pollution and nutrient enrichment in an urban lake: evidence from paleolimnology[J]. Annales de Limnologie-International Journal of Limnology, 2014, 50(2): 121-130.
46 DONG M T, LUO Z J, JIANG Q F, et al. The rapid increases in microplastics in urban lake sediments[J]. Scientific Reports, 2020, 10. DOI: 10.1038/s41598-020-57933-8 .
47 WANG Z H, DONG Y H, CHEN J, et al.. Dating recent sediments from the subaqueous Yangtze Delta and adjacent continental shelf, China[J]. Journal of Palaeogeography, 2014, 3(2): 207-218.
48 WU Y H, LüCKE A, WANG S M. Assessment of nutrient sources and paleoproductivity during the past century in Longgan Lake, middle reaches of the Yangtze River, China[J]. Journal of Paleolimnology, 2008, 39(4): 451-462.
49 WU Y H, LIU E F, YAO S C, et al. Recent heavy metal accumulation in Dongjiu and Xijiu Lakes, East China[J]. Journal of Paleolimnology, 2010, 43(2): 385-392.
50 BOYLE J F, ROSE N L, BENNION H, et al. Environmental impacts in the Jianghan Plain: evidence from lake sediments[J]. Water, Air, and Soil Pollution, 1999, 112: 21-40.
51 ROSE N L, BOYLE J F, DU Y, et al. Sedimentary evidence for changes in the pollution status of Taihu in the Jiangsu region of eastern China[J]. Journal of Paleolimnology, 2004, 32(1): 41-51.
52 HIRAKAWA E, MURAKAMI-KITASE A, OKUDAIRA T, et al. The spatial and temporal distributions of spheroidal carbonaceous particles from sediment core samples from industrial cities in Japan and China[J]. Environmental Earth Sciences, 2011, 64(3): 833-840.
53 HAN Y M, AN Z S, LEI D W, et al. The Sihailongwan Maar Lake, northeastern China as a candidate global boundary stratotype section and point for the Anthropocene series[J]. The Anthropocene Review, 2023, 10(1): 177-200.
54 PANIZZO V N, MACKAY A W, ROSE N L, et al. Recent palaeolimnological change recorded in Lake Xiaolongwan, Northeast China: climatic versus anthropogenic forcing[J]. Quaternary International, 2013, 290/291: 322-334.
55 ZHANG E L, LIU E F, SHEN J, et al. One century sedimentary record of lead and zinc pollution in Yangzong Lake, a highland lake in southwestern China[J]. Journal of Environmental Sciences, 2012, 24(7): 1 189-1 196.
56 XIAN H B, DONG X H, LI Y, et al. Reservoirs as high-efficacy sentinels of regional atmospheric pollution and precipitation: magnetic and chemical evidence from a typical subtropical reservoir in South China[J]. Environmental Science and Pollution Research, 2023, 30(40): 92 507-92 524.
57 ROSE N L, FLOWER R J, APPLEBY P G. Spheroidal Carbonaceous Particles (SCPs) as indicators of atmospherically deposited pollutants in North African wetlands of conservation importance[J]. Atmospheric Environment, 2003, 37(12): 1 655-1 663.
58 MARTINS C C, BíCEGO M C, ROSE N L, et al. Historical record of Polycyclic Aromatic Hydrocarbons (PAHs) and Spheroidal Carbonaceous Particles (SCPs) in marine sediment cores from Admiralty Bay, King George Island, Antarctica[J]. Environmental Pollution, 2010, 158(1): 192-200.
59 YOSHIKAWA S, YAMAGUCHI S, HATA A. Paleolimnological investigation of recent acidity changes in Sawanoike Pond, Kyoto, Japan[J]. Journal of Paleolimnology, 2000, 23(3): 285-304.
60 NAGAFUCHI O, ROSE N L, HOSHIKA A, et al. The temporal record and sources of atmospherically deposited fly-ash particles in Lake Akagi-konuma, a Japanese Mountain Lake[J]. Journal of Paleolimnology, 2009, 42(3): 359-371.
61 OSADA K, URA S, KAGAWA M, et al. Wet and dry deposition of mineral dust particles in Japan: factors related to temporal variation and spatial distribution[J]. Atmospheric Chemistry and Physics, 2014, 14(2): 1 107-1 121.
62 ROSE N L, ROSE C L, BOYLE J F, et al. Lake-sediment evidence for local and remote sources of atmospherically deposited pollutants on svalbard[J]. Journal of Paleolimnology, 2004, 31(4): 499-513.
63 ROSE N L, JONES V J, NOON P E, et al. Long-range transport of pollutants to the Falkland Islands and Antarctica: evidence from lake sediment fly ash particle records[J]. Environmental Science & Technology, 2012, 46(18): 9 881-9 889.
64 CHIRINOS L, ROSE N L, URRUTIA R, et al. Environmental evidence of fossil fuel pollution in Laguna Chica de San Pedro Lake sediments (Central Chile)[J]. Environmental Pollution, 2006, 141(2): 247-256.
65 SCHNEIDER L, ROSE N L, LINTERN A, et al. Assessing environmental contamination from metal emission and relevant regulations in major areas of coal mining and electricity generation in Australia[J]. Science of the Total Environment, 2020, 728. DOI:10.1016/j.scitotenv.2020.137398 .
66 ENGELS S, FONG L S R Z, CHEN Q, et al. Historical atmospheric pollution trends in Southeast Asia inferred from lake sediment records[J]. Environmental Pollution, 2018, 235: 907-917.
67 LARSEN J. Recent changes in diatom-inferred pH, heavy metals, and spheroidal carbonaceous particles in lake sediments near an oil refinery at Mongstad, western Norway[J]. Journal of Paleolimnology, 2000, 23(4): 343-363.
68 ROBERTS L R, KERSTING D K, ZINKE J, et al. First recorded presence of anthropogenic fly-ash particles in coral skeletons[J]. The Science of the Total Environment, 2024, 921. DOI: 10.1016/j.scitotenv.2024.170665 .
69 ROSE N L, APPLEBY P G. Regional applications of lake sediment dating by spheroidal carbonaceous particle analysis I: United Kingdom[J]. Journal of Paleolimnology, 2005, 34(3): 349-361.
70 YANG H D, ROSE N L, BATTARBEE R W. Dating of recent catchment peats using Spheroidal Carbonaceous Particle (SCP) concentration profiles with particular reference to Lochnagar, Scotland[J]. The Holocene, 2001, 11(5): 593-597.
71 MURAKAMI-KITASE A, OKUDAIRA T, INOUE J. Relationship between surface morphology and chemical composition of spheroidal carbonaceous particles within sediment core samples recovered from Osaka Bay, Japan[J]. Environmental Earth Sciences, 2010, 59(8): 1 723-1 729.
72 THOMAS E R, TETZNER D R, ROBERTS S L, et al. First evidence of industrial fly-ash in an Antarctic ice core[J]. Scientific Reports, 2023, 13. DOI:10.1038/s41598-023-33849-x .
73 ROSE N L, HARLOCK S, APPLEBY P G. The spatial and temporal distributions of Spheroidal Carbonaceous fly-ash Particles (SCP) in the sediment records of European Mountain Lakes[J]. Water, Air, and Soil Pollution, 1999, 113(1): 1-32.
74 FIA?KIEWICZ-KOZIE? B, ?OKAS E, SMIEJA-KRóL B, et al. The ?nie?ka peatland as a candidate Global boundary Stratotype Section and Point for the Anthropocene series[J]. The Anthropocene Review, 2023, 10(1): 288-315.
75 BINDLER R, RENBERG I, APPLEBY P G, et al. Mercury accumulation rates and spatial patterns in lake sediments from West Greenland: a coast to ice margin transect[J]. Environmental Science & Technology, 2001, 35(9): 1 736-1 741.
76 HICKS S, ISAKSSON E. Assessing source areas of pollutants from studies of fly ash, charcoal, and pollen from Svalbard snow and ice[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D2). DOI: 10.1029/2005JD006167 .
77 ROSE N L, APPLEBY P G, BOYLE J F, et al. The spatial and temporal distribution of fossil-fuel dervied pollutants in the sediment record of Lake Baikal, east Siberia[J]. Journal of Paleolimnology, 1998, 20(2): 151-162.
78 ROSE N L. A method for the extraction of carbonaceous particles from lake sediment[J]. Journal of Paleolimnology, 1990, 3(1): 45-53.
79 ROSE N L. A note on further refinements to a procedure for the extraction of carbonaceous fly-ash particles from sediments[J]. Journal of Paleolimnology, 1994, 11(2): 201-204.
80 DAVIES T D, ABRAHAMS P W, TRANTER M, et al. Black acidic snow in the remote Scottish Highlands[J]. Nature, 1984, 312(5 989): 58-61.
81 del MONTE M, VITTORI O. Air pollution and stone decay: the case of Venice[J]. Endeavour, 1985, 9(3): 117-122.
82 FLOWER R J. Change, stress, sustainability and aquatic ecosystem resilience in North African wetland lakes during the 20th century: an introduction to integrated biodiversity studies within the CASSARINA Project[J]. Aquatic Ecology, 2001, 35(3): 261-280.
83 APPLEBY P G, BIRKS H H, FLOWER R J, et al. Radiometrically determined dates and sedimentation rates for recent sediments in nine North African wetland lakes (the CASSARINA Project)[J]. Aquatic Ecology, 2001, 35(3): 347-367.
84 ISAKSSON E, HERMANSON M, HICKS S, et al. Ice cores from Svalbard-useful archives of past climate and pollution history[J]. Physics and Chemistry Earth, Parts A/B/C, 2003, 28(28/29/30/31/32): 1 217-1228.
85 MURAKAMI A, YOSHIKAWA S. Record for long-range transport of fly-ash particles during past 100 years in the pond sediments in Oki Islands, Japan Sea[J]. The Quaternary Research (Daiyonki-Kenkyu), 2007, 46(3): 275-281.
86 MURAI S, SATO R, HASHIMOTO M, et al. Temporal changes in transboundary air pollutants in bottom sediments of lakes in East Asia[J]. Journal of Environmental Science and Engineering, 2013, 2: 629-639.
87 INOUE J, TOMOZAWA A, OKUDAIRA T. The use of size distributions of spheroidal carbonaceous particles in swimming pool deposits for evaluating atmospheric particle behaviour[J]. Water, Air, & Soil Pollution, 2013, 224(5). DOI: 10.1007/s11270-013-1580-7 .
88 INOUE J, MOMOSE A, OKUDAIRA T, et al. Chemical characteristics of Northeast Asian fly ash particles: implications for their long-range transportation[J]. Atmospheric Environment, 2014, 95: 375-382.
89 CRUTZEN P J, STOERMER E F. The “Anthropocene”[J]. Global Change Newsletter, 2000, 41: 17-18.
90 HAMMES K, SCHMIDT M W I, SMERNIK R J, et al. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere[J]. Global Biogeochemical Cycles, 2007, 21(3). DOI: 10.1029/2006GB002914 .
91 MASIELLO C A. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004, 92(1/2/3/4): 201-213.
92 ROSE N L, RUPPEL M. Environmental archives of contaminant particles[M]// Environmental contaminants. Dordrecht: Springer, 2015: 187-221.
93 HEDGES J I, EGLINTON G, HATCHER P G, et al. The molecularly-uncharacterized component of nonliving organic matter in natural environments[J]. Organic Geochemistry, 2000, 31(10): 945-958.
94 SEILER W, CRUTZEN P J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning[J]. Climatic Change, 1980, 2(3): 207-247.
95 CHAKRABARTY R K, MOOSMüLLER H, ARNOTT W P, et al. Low fractal dimension cluster-dilute soot aggregates from a premixed flame[J]. Physical Review Letters, 2009, 102(23). DOI: 10.1103/PhysRevLett.102.235504 .
96 ANDREAE M O, GELENCSéR A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols[J]. Atmospheric Chemistry and Physics, 2006, 6(10): 3 131-3 148.
97 ROSE N. Fly-ash particles[M]// LAST W M, SMOL J P. Tracking environmental change using lake sediments. Dordrecht: Springer Netherlands, 2002: 319-349.
98 ROSE N L. Quality control in the analysis of lake sediments for spheroidal carbonaceous particles[J]. Limnology and Oceanography: Methods, 2008, 6(4): 172-179.
99 WIK M, RENBERG I. Recent atmospheric deposition in sweden of carbonaceous particles from fossil-fuel combustion surveyed using lake sediments[J]. Ambio, 1991, 20(7): 289-292.
100 ROSE N L, JUGGINS S, WATT J. Fuel-type characterization of carbonaceous fly-ash particles using EDS-derived surface chemistries and its application to particles extracted from lake sediments[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1996, 452(1 947): 881-907.
101 CAPE J N, COYLE M, DUMITREAN P. The atmospheric lifetime of black carbon[J]. Atmospheric Environment, 2012, 59: 256-263.
102 JAENICKE R. Atmospheric aerosols and global climate[J]. Journal of Aerosol Science, 1980, 11(5/6): 577-588.
103 RENBERG I. Kartl?ggning av deposition av kolhaltiga partiklar fr?n olje-och kolf?rbr?nning[J]. Proceedings Fr?n F?rbr?nningsteknisk Projektexposé, Projektresultat, 1986, 1: 316-325.
104 LARSEN J. Size distributions and concentrations of Spheroidal Carbonaceous fly-ash Particles (SCPs) in lake sediments as an aid to detecting locally deposited atmospheric pollution[J]. Water, Air, and Soil Pollution, 2003, 149(1): 163-175.
105 VUKI? J, FOTT J, PETRUSEK A, et al. What can size distribution of spheroidal carbonaceous particles reveal about their source?[J]. Atmospheric Environment, 2006, 40(19): 3 527-3 535.
106 VACHULA R S, OJEDA A S, HENDERSON E D, et al. The DiSCPersal model: a simple model for the small-scale atmospheric transport of Spheroidal Carbonaceous Particles (SCPs)[J]. Chemosphere, 2023, 328. DOI:10.1016/j.chemosphere.2023.138547 .
107 INOUE J, MORITSUGU K, OKUDAIRA T, et al. Elemental compositions and sizes of carbonaceous fly ash particles from atmospheric deposition collected at Cape Hedo, Okinawa, Japan: implications for their long-range transportation and source region variation[J]. Atmospheric Pollution Research, 2020, 11(2): 393-400.
108 MORENO J, LEORRI E, FATELA F, et al. Dating recent tidal marsh sediments using windborne giant particles of green petcoke—an example from the southwest coast of Portugal[J]. Continental Shelf Research, 2023, 262. DOI:10.1016/j.csr.2023.105026 .
109 ROSE N L, SHILLAND E, BERG T, et al. Relationships Between Acid Ions and Carbonaceous Fly-Ash Particles in Deposition at European Mountain Lakes[M]// SATAKE K, SHINDO J, TAKAMATSU T, et al. Acid rain 2000: proceedings from the 6th international conference on acidic deposition: looking back to the past and thinking of the future Tsukuba, Japan. Dordrecht: Springer Netherlands, 2001: 1 703-1 708.
110 ROSE N L, RIPPEY B. The historical record of PAH, PCB, trace metal and fly-ash particle deposition at a remote lake in north-west Scotland[J]. Environmental Pollution, 2002, 117(1): 121-132.
111 ROSE N L, MONTEITH D T. Temporal trends in spheroidal carbonaceous particle deposition derived from annual sediment traps and lake sediment cores and their relationship with non-marine sulphate[J]. Environmental Pollution, 2005, 137(1): 151-163.
112 ROSE N L, ALLIKSAAR T, BOWMAN J J, et al. The flame research project: introduction and methods[J]. Water, Air, and Soil Pollution, 1998, 106(3): 205-218.
113 FOTT J, VUKIC J, ROSE N. The spatial distribution of characterized fly-ash particles and trace metals in lake sediments and catchment mosses: Czech republic[J]. Water, Air, and Soil Pollution, 1998, 106(3/4): 241-261.
114 BOWMAN J J, HARLOCK S. The spatial distribution of characterised fly-ash particles and trace metals in lake sediments and catchment mosses: Ireland[J]. Water, Air, and Soil Pollution, 1998, 106(3): 263-286.
115 ALLIKSAAR T, PUNNING J M. The spatial distribution of characterised fly-ash particles and trace metals in lake sediments and catchment mosses: Estonia[J]. Water, Air, and Soil Pollution, 1998, 106(3): 219-239.
116 DOUBLEDAY N C, DOUGLAS M S V, SMOL J P. Paleoenvironmental studies of black carbon deposition in the high arctic: a case study from Northern Ellesmere Island[J]. Science of the Total Environment, 1995, 160/161: 661-668.
117 GOLDBERG E D, HODGE V F, GRIFFIN J J, et al. Impact of fossil fuel combustion on the sediments of Lake Michigan[J]. Environmental Science & Technology, 1981, 15(4): 466-471.
118 WIK M, RENBERG I. Spheroidal carbonaceous particles as a marker for recent sediment distribution[J]. Hydrobiologia, 1991, 214(1): 85-90.
119 GRIEST W H, TOMKINS B A. Carbonaceous particles in coal combustion stack ash and their interaction with polycyclic aromatic hydrocarbons[J]. Science of the Total Environment, 1984, 36: 209-214.
120 SCHURE M, SOLTYS P A, NATUSCH D F S, et al. Surface area and porosity of coal fly ash[J]. Environmental Science & Technology, 1985, 19(1): 82-86.
121 CZECH T, MARCHEWICZ A, SOBCZYK A T, et al. Heavy metals partitioning in fly ashes between various stages of electrostatic precipitator after combustion of different types of coal[J]. Process Safety and Environmental Protection, 2020, 133: 18-31.
122 BOYLE J F, MACKAY A W, ROSE N L, et al. Sediment heavy metal record in Lake Baikal: natural and antrhopogenic sources[J]. Journal of Paleolimnology, 1998, 20(2): 135-150.
123 MOJIRI A, ZHOU J L, OHASHI A, et al. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments[J]. Science of the Total Environment, 2019, 696. DOI: 10.1016/j.scitotenv.2019.133971 .
124 LUO C, PAJALA G, YEKTA S S, et al. Soil contamination caused by fly ash from coal-fired thermal power plants in India: spatiotemporal distribution and elemental leaching potential[J]. Applied Geochemistry, 2024, 170. DOI: 10.1016/j.apgeochem.2024.106080 .
125 SEGERSSON D, ENEROTH K, GIDHAGEN L, et al. Health impact of PM10, PM2.5 and black carbon exposure due to different source sectors in Stockholm, Gothenburg and Umea, Sweden[J]. International Journal of Environmental Research and Public Health, 2017, 14(7). DOI: 10.3390/ijerph14070742 .
126 KRAVCHENKO J, LYERLY H K. The impact of coal-powered electrical plants and coal ash impoundments on the health of residential communities[J]. North Carolina Medical Journal, 2018, 79(5): 289-300.
127 Y?LD?Z A, Kü?üKKAYA A G, M?HLAYANLAR E. Investigation and characterization of black crusts on limestone at historical buildings in the cities of ?stanbul and Edirne (Turkey)[J]. Instrumentation Science & Technology, 2024, 52(3): 291-308.
128 NOVAKOV T, CHANG S G, HARKER A B. Sulfates as pollution particulates: catalytic formation on carbon (soot) particles[J]. Science, 1974, 186(4 160): 259-261.
129 HENRY W M, KNAPP K T. Compound forms of fossil fuel fly ash emissions[J]. Environmental Science & Technology, 1980, 14(4): 450-456.
130 FISHER G L, CHANG D P, BRUMMER M. Fly ash collected from electrostatic precipitators: microcrystalline structures and the mystery of the spheres[J]. Science, 1976, 192(4 239): 553-555.
131 del MONTE M, SABBIONI C, VITTORI O. Airborne carbon particles and marble deterioration[J]. Atmospheric Environment (1967), 1981, 15(5): 645-652.
132 FEITELBERG A S, LONGWELL J P, SAROFIM A F. Metal enhanced soot and PAH formation[J]. Combustion and Flame, 1993, 92(3): 241-253.
133 WEY M Y, CHAO C Y, CHEN J C, et al. The relationship between the quantity of heavy metal and PAHs in fly ash[J]. Journal of the Air & Waste Management Association, 1998, 48(8): 750-756.
134 ROSE N L, YANG H. Temporal and spatial patterns of Spheroidal Carbonaceous Particles (SCPs) in sediments, soils and deposition at lochnagar[M]// ROSE N L. Lochnagar: the natural history of a mountain lake. Dordrecht: Springer Netherlands, 2007: 403-423.
135 ARNAUD F, MAGAND O, CHAPRON E, et al. Radionuclide dating (210Pb, 137Cs, 241Am) of recent lake sediments in a highly active geodynamic setting (Lakes Puyehue and Icalma—Chilean Lake District)[J]. Science of the Total Environment, 2006, 366(2): 837-850.
136 OLDFIELD F, RICHARDSON N, APPLEBY P G. Radiometric dating (210Pb, 137Cs, 241Am) of recent ombrotrophic peat accumulation and evidence for changes in mass balance[J]. The Holocene, 1995, 5(2): 141-148.
137 THORNALLEY D J R, OPPO D W, ORTEGA P, et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years[J]. Nature, 2018, 556(7 700): 227-230.
138 GARCéS-PASTOR S, FLETCHER W J, RYAN P A. Ecological impacts of the industrial revolution in a lowland raised peat bog near Manchester, NW England[J]. Ecology and Evolution, 2023, 13(2). DOI: 10.1002/ece3.9807 .
139 CAO Yanmin, ZHANG Enlou, SHEN Ji, et al. Subfossil chironomid assemblages in sediments of Meiliang Bay, Lake Taihu and the trophic reconstruction[J]. Journal of Lake Sciences, 2011, 23(4): 549-554.
139 曹艳敏, 张恩楼, 沈吉, 等. 太湖梅梁湾摇蚊亚化石沉积记录及营养演化研究[J]. 湖泊科学, 2011, 23(4): 549-554.
140 LIU E F, BIRCH G F, SHEN J, et al. Comprehensive evaluation of heavy metal contamination in surface and core sediments of Taihu Lake, the third largest freshwater lake in China[J]. Environmental Earth Sciences, 2012, 67(1): 39-51.
141 ZENG L H, NING D L, XU L, et al. Sedimentary evidence of environmental degradation in Sanliqi Lake, Daye city (a typical mining city, central China)[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 95(3): 317-324.
142 PETTERSON G, RENBERG I, GELADI P, et al. Spatial uniformity of sediment accumulation in varved lake sediments in northern Sweden[J]. Journal of Paleolimnology, 1993, 9(3): 195-208.
143 GRIFFIN J J, GOLDBERG E D. Sphericity as a characteristic of solids from fossil fuel burning in a Lake Michigan sediment[J]. Geochimica et Cosmochimica Acta, 1981, 45(5): 763-769.
144 MURAKAMI A, INOUE J, YOSHIKAWA S, et al. The fossil fuel combustion and fire history in Osaka City by analyzing Spheroidal Carbonaceous Particles (SCPs) and charcoal of the Osaka Castle moat sediments[J]. The Journal of the Geological Society of Japan, 2004, 110(1): 11-18.
145 MOMOSE A, INOUE J, MURAKAMI-KITASE A, et al. Characteristic differences in the chemical composition of spheroidal carbonaceous particles in Japanese and Chinese cities[J]. Water, Air, & Soil Pollution, 2012, 223(8): 4 761-4 767.
146 ROSE N, JUGGINS S, WATT J, et al. Fuel-type characterization of spheroidal carbonaceous particles using surface chemistry[J]. Ambio, 1994, 23(4/5): 296-299.
147 QIAO Q, LIANG J, ZENG L, et al. Chemical characteristics of spheroidal carbonaceous particles in lakes of the middle and lower Yangtze reaches[J]. Environmental Science & Technology, 2018, 41(5): 126-132.
148 ROSE N L. Inorganic fly-ash spheres as pollution tracers[J]. Environmental Pollution, 1996, 91(2): 245-252.
149 ALLIKSAAR T, H?RSTEDT P, RENBERG I. Characteristic fly-ash particles from oil-shale combustion found in lake sediments[J]. Water, Air, and Soil Pollution, 1998, 104(1): 149-160.
150 OLDFIELD F. Can the magnetic signatures from inorganic fly ash be used to mark the onset of the Anthropocene?[J]. The Anthropocene Review, 2015, 2(1): 3-13.
151 WITZE A. Geologists reject the Anthropocene as Earth’s new epoch—after 15 years of debate[J]. Nature, 2024, 627: 249-250.
152 PAVESE G, ALADOS-ARBOLEDAS L, CAO J, et al. Carbonaceous particles in the atmosphere: experimental and modelling issues[J]. Advances in Meteorology, 2014. DOI: 10.1155/2014/529850 .
153 POWER A L, TENNANT R K, STEWART A G, et al. The evolution of atmospheric particulate matter in an urban landscape since the Industrial Revolution[J]. Scientific Reports, 2023, 13(1). DOI: 10.1038/s41598-023-35679-3 .
154 CURTIS C J, ROSE N L, YANG H, et al. Contamination of depressional wetlands in the Mpumalanga Lake district of South Africa near a global emission hotspot[J]. The Science of the Total Environment, 2024, 938. DOI:10.1016/j.scitotenv.2024.173493 .
155 UWMN. UK upland waters monitoring network[EB/OL]. [2024-07-10]. https:uwmn.uk/.
156 ZHU J, SHANG J, ZHU T. A new understanding of the microstructure of soot particles: the reduced graphene oxide-like skeleton and its visible-light driven formation of reactive oxygen species[J]. Environmental Pollution, 2021, 270. DOI:10.1016/j.envpol.2020.116079 .
157 BARSANTI M, GARCIA-TENORIO R, SCHIRONE A, et al. Challenges and limitations of the 210Pb sediment dating method: results from an IAEA modelling interlaboratory comparison exercise[J]. Quaternary Geochronology, 2020, 59. DOI: 10.1016/j.quageo.2020.101093 .
158 SWINDLES G. Dating recent peat profiles using Spheroidal Carbonaceous Particles (SCPs)[J]. Mires and Peat, 2010, 7(3): 1-5.
Outlines

/