Morphology and Surface Features of Diamonds from Mengyin: Geological Implications for the Nature and Activity of Deep-Seated Melts and Fluids
Received date: 2024-04-01
Revised date: 2024-05-22
Online published: 2024-05-28
Supported by
the National Natural Science Foundation of China(42073008)
Diamond undergoes intricate interactions with melts and fluids in the Subcontinental Lithospheric Mantle (SCLM) and kimberlite magma, resulting in a diverse array of crystal morphologies and surface features. These morphological attributes serve as proxies, reflecting the varying distinct properties of melts and fluids during mantle storage and kimberlite magma migration. This study meticulously analyzed the morphology and surface features of diamonds sourced from Mengyin. In addition, we systematically discuss the characteristics of mantle and kimberlite melt and fluids, as inferred from these diamonds, with reference to a comprehensive body of international dissolution experiments on natural diamonds that simulated the mantle and kimberlite temperature, pressure, and chemical conditions. This investigation yields the following key findings:
Yongkang DING , Weizhang LIANG , Zhili QIU , Xiaoqin DENG , Yuan SUN , Ying MA , Chengyang SUN , Taijin LU . Morphology and Surface Features of Diamonds from Mengyin: Geological Implications for the Nature and Activity of Deep-Seated Melts and Fluids[J]. Advances in Earth Science, 2024 , 39(6) : 602 -615 . DOI: 10.11867/j.issn.1001-8166.2024.041
1 | FAURE S. World kimberlites CONSOREM database[DB/OL]. 2010. [2024-04-01]. . |
2 | KJARSGAARD B A, de WIT M, HEAMAN L M, et al. A review of the geology of global diamond mines and deposits[J]. Reviews in Mineralogy and Geochemistry, 2022, 88(1): 1-117. |
3 | ZHANG Beili, CHEN Hua, QIU Zhili, et al. Study on the origin of diamonds under the framework of the united nations Kimberley process[M]. Beijing: Geological Publishing House, 2013. |
3 | 张蓓莉, 陈华, 丘志力, 等. 联合国金伯利进程框架下的钻石原产地研究[M]. 北京: 地质出版社, 2013. |
4 | ZHENG Jianping, YU Chunmei, LU Fengxiang, et al. Diamond with multistage growth and its significance for mantle fluid within accreted craton[J]. Earth Science Frontiers, 2001, 8(3): 103-109. |
4 | 郑建平, 余淳梅, 路凤香, 等. 不连续生长的金刚石与克拉通地块内部增生过程中的地幔流体作用[J]. 地学前缘, 2001, 8(3): 103-109. |
5 | CHEN Meihua, LU Fengxiang, DI Jingru, et al. The cathodoluminescence and FTIR analysis of Wangfangdian diamonds from Liaoning Province[J]. Chinese Science Bulletin, 2000, 45(13): 1 424-1 428. |
5 | 陈美华, 路凤香, 狄敬如, 等. 辽宁瓦房店金刚石的阴极发光和红外光谱分析[J]. 科学通报, 2000, 45(13): 1 424-1 428. |
6 | FEDORTCHOUK Y, LIEBSKE C, MCCAMMON C. Diamond destruction and growth during mantle metasomatism: an experimental study of diamond resorption features[J]. Earth and Planetary Science Letters, 2019, 506: 493-506. |
7 | KHOKHRYAKOV A F, PAL’ YANOV Y N. Influence of the fluid composition on diamond dissolution forms in carbonate melts[J]. American Mineralogist, 2010, 95(10): 1 508-1 514. |
8 | KHOKHRYAKOV A F, PAL’ YANOV Y N. The evolution of diamond morphology in the process of dissolution: experimental data[J]. American Mineralogist, 2007, 92(5/6): 909-917. |
9 | KOZAI Y. Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300-1420 ℃ and 1 GPa with controlled oxygen partial pressure[J]. American Mineralogist, 2005, 90(11/12): 1 759-1 766. |
10 | SMIT K V, SHIREY S B. Diamonds from the deep: diamonds are not forever!Diamond dissolution[J]. Gems & Gemology, 2020, 56(1): 148-155. |
11 | FEDORTCHOUK Y. A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies[J]. Earth-Science Reviews, 2019, 193: 45-65. |
12 | ZHANG Z H, FEDORTCHOUK Y. Records of mantle metasomatism in the morphology of diamonds from the Slave craton[J]. European Journal of Mineralogy, 2012, 24(4): 619-632. |
13 | HOWARTH G H, KAHLE B, JANNEY P E, et al. Caught in the act: diamond growth and destruction in the continental lithosphere[J]. Geology, 2023, 51(6): 532-536. |
14 | HARRIS J W, SMIT K V, FEDORTCHOUK Y, et al. Morphology of monocrystalline diamond and its inclusions[J]. Reviews in Mineralogy and Geochemistry, 2022, 88(1): 119-166. |
15 | FEDORTCHOUK Y, CHINN I L, PERRITT S H, et al. Diamond-destructive mantle metasomatism: evidence from the internal and external textures of diamonds and their nitrogen defects[J]. Lithos, 2022, 414/415. DOI:10.1016/j.lithos.2022.106616 . |
16 | TAPPERT R, TAPPERT M C. Diamonds in nature: a guide to rough diamonds[M]. Heidelberg, Germany, New York: Springer, 2011. |
17 | MOORE M, LANG A R. On the origin of the rounded dodecahedral habit of natural diamond[J]. Journal of Crystal Growth, 1974, 26(1): 133-139. |
18 | FEDORTCHOUK Y, CANIL D, SEMENETS E. Mechanisms of diamond oxidation and their bearing on the fluid composition in kimberlite magmas[J]. American Mineralogist, 2007, 92(7): 1 200-1 212. |
19 | ZHANG Z H, FEDORTCHOUK Y, HANLEY J J. Evolution of diamond resorption in a silicic aqueous fluid at 1~3 GPa: application to kimberlite emplacement and mantle metasomatism[J]. Lithos, 2015, 227: 179-193. |
20 | FEDORTCHOUK Y, ZHANG Z. Diamond resorption: link to metasomatic events in the mantle or record of magmatic fluid in kimberlitic magma?[J]. The Canadian Mineralogist, 2011, 49(3): 707-719. |
21 | FEDORTCHOUK Y, CHINN I L, KOPYLOVA M G. Three styles of diamond resorption in a single kimberlite: effects of volcanic degassing and assimilation[J]. Geology, 2017, 45(10): 871-874. |
22 | LI Z Y, FEDORTCHOUK Y, FULOP A, et al. Positively oriented trigons on diamonds from the Snap Lake kimberlite dike, Canada: implications for fluids and kimberlite cooling rates[J]. American Mineralogist, 2018, 103(10): 1 634-1 648. |
23 | FEDORTCHOUK Y, CANIL D, CARLSON J A. Dissolution forms in Lac de Gras diamonds and their relationship to the temperature and redox state of kimberlite magma[J]. Contributions to Mineralogy and Petrology, 2005, 150(1): 54-69. |
24 | FEDORTCHOUK Y. Diamond resorption features as a new method for examining conditions of kimberlite emplacement[J]. Contributions to Mineralogy and Petrology, 2015, 170(4). DOI: 10.1007/s00410-015-1190-z . |
25 | Qing Lü, LIU Fei, CHU Zhiyuan, et al. The mineralogical characteristics and comparison of diamonds from the three kimberlite belts in Mengyin, Shandong Province[J]. Acta Geologica Sinica, 2022, 96(4): 1 225-1 238. |
25 | 吕青, 刘飞, 褚志远, 等. 山东蒙阴三个金伯利岩带金刚石的矿物学特征与对比[J]. 地质学报, 2022, 96(4): 1 225-1 238. |
26 | ZHANG Peiqiang. The formation process of kimberlite in Shandong [D].Beijing: China University of Geosciences (Beijing), 2006. |
26 | 张培强. 山东金伯利岩岩管成因[D]. 北京: 中国地质大学(北京), 2006. |
27 | LU Fengxiang, ZHAO Lei, DENG Jinfu, et al. The discussion on the ages of kimberlitic magma activity in North China Platform[J]. Acta Petrologica Sinica, 1995, 11(4): 365-374. |
27 | 路凤香, 赵磊, 邓晋福, 等. 华北地台金伯利岩岩浆活动时代讨论[J]. 岩石学报, 1995, 11(4): 365-374. |
28 | DOBBS P N, DUNCAN D, SHEE S R, et al. The geology of the Mengyin kimberlites, Shandong, China[C]// International kimberlite conference extended abstracts. Araxa, Brazil, 1991: 76-78. |
29 | LI Q L, CHEN F K, WANG X L, et al. Ultra-low procedural blank and the single-grain mica Rb-Sr isochron dating[J]. Chinese Science Bulletin, 2005, 50(24): 2 861-2 865. |
30 | LI Q L, WU F Y, LI X H, et al. Precisely dating Paleozoic kimberlites in the North China Craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle[J]. Lithos, 2011, 126(1/2): 127-134. |
31 | ZHANG Hongfu, YANG Yueheng. Emplacement age and Sr-Nd-Hf isotopic characteristics of the diamondiferous kimberlites from the eastern North China Craton[J]. Acta Petrologica Sinica, 2007, 23(2): 285-294. |
31 | 张宏福, 杨岳衡. 华北克拉通东部含金刚石金伯利岩的侵位年龄和Sr-Nd-Hf同位素地球化学特征[J]. 岩石学报, 2007, 23(2): 285-294. |
32 | YANG Y H, WU F Y, WILDE S A, et al. In situ perovskite Sr-Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton[J]. Chemical Geology, 2009, 264(1/2/3/4): 24-42. |
33 | ZHU Rixiang, XU Yigang, ZHU Guang, et al. Destruction of the North China Craton[J]. Science China Earth Sciences, 2012, 42(8): 1 135-1 159. |
33 | 朱日祥, 徐义刚, 朱光, 等. 华北克拉通破坏[J]. 中国科学:地球科学, 2012, 42(8): 1 135-1 159. |
34 | CHEN L, CHENG C, WEI Z G. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton[J]. Earth and Planetary Science Letters, 2009, 286(1/2): 171-183. |
35 | CHEN L. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration[J]. Physics of the Earth and Planetary Interiors, 2009, 173(3/4): 216-227. |
36 | ZHANG Hongfu. Peridotite-melt interaction: a key point for the destruction of cratonic lithospheric mantle[J]. Chinese Science Bulletin, 2009, 54(14): 2 008-2 026. |
36 | 张宏福. 橄榄岩—熔体相互作用:克拉通型岩石圈地幔能够被破坏之关键[J]. 科学通报, 2009, 54(14): 2 008-2 026. |
37 | ZHANG H F. Peridotite-melt interaction: a key point for the destruction of cratonic lithospheric mantle[J]. Chinese Science Bulletin, 2009, 54(19): 3 417-3 437. |
38 | TANG Yanjie, YING Jifeng, ZHAO Yuepeng, et al. Nature and secular evolution of the lithospheric mantle beneath the North China Craton[J]. Science China Earth Sciences, 2021, 51(9): 1 489-1 503. |
38 | 汤艳杰, 英基丰, 赵月鹏, 等. 华北克拉通岩石圈地幔特征与演化过程[J]. 中国科学: 地球科学, 2021, 51(9): 1 489-1 503. |
39 | LU Fengxiang. Multiple-geological events of ancient lithospheric mantle beneath North China Craton: as inferred from peridotite xenoliths in kimberlite[J]. Acta Petrologica Sinica, 2010, 26(11): 3 177-3 188. |
39 | 路凤香. 华北克拉通古老岩石圈地幔的多次地质事件: 来自金伯利岩中橄榄岩捕虏体的启示[J]. 岩石学报, 2010, 26(11): 3 177-3 188. |
40 | STACHEL T, HARRIS J W. The origin of cratonic diamonds—constraints from mineral inclusions[J]. Ore Geology Reviews, 2008, 34(1/2): 5-32. |
41 | SMIT K V, SHIREY S B, STERN R A, et al. Diamond growth from C-H-N-O recycled fluids in the lithosphere: evidence from CH4 micro-inclusions and δ13C-δ15N-N content in Marange mixed-habit diamonds[J]. Lithos, 2016, 265: 68-81. |
42 | LUTH R W, STACHEL T. The buffering capacity of lithospheric mantle: implications for diamond formation[J]. Contributions to Mineralogy and Petrology, 2014, 168(5). DOI:10.1007/s00410-014-1083-6 . |
43 | WEISS Y, CZAS J, NAVON O. Fluid inclusions in fibrous diamonds[J]. Reviews in Mineralogy and Geochemistry, 2022, 88(1): 475-532. |
44 | WEISS Y, KOORNNEEF J M, DAVIES G R. Sr-Nd-Pb isotopes of fluids in diamond record two-stage modification of the continental lithosphere[J]. Geochemical Perspectives Letters, 2023, 27: 20-25. |
45 | ZHENG Jianping. Comparison of mantle-derived matierals from different spatiotemporal settings: implications for destructive and accretional processes of the North China Craton[J]. Chinese Science Bulletin, 2009, 54(14): 1 990-2 007. |
45 | 郑建平. 不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程[J]. 科学通报, 2009, 54(14): 1 990-2 007. |
46 | RUSSELL J K, SPARKS R S J, KAVANAGH J L. Kimberlite volcanology: transport, ascent, and eruption[J]. Elements, 2019, 15(6): 405-410. |
47 | CHI Jishang, LU Fengxiang, ZHAO Lei, et al. Characteristics of kimberlite and Paleozoic lithospheric mantle in North China platform[M]. Beijing: Science Press, 1996. |
47 | 池际尚, 路凤香, 赵磊,等. 华北地台金伯利岩及古生代岩石圈地幔特征[M]. 北京: 科学出版社, 1996. |
48 | MITCHELL R H, GIULIANI A, O’BRIEN H. What is a kimberlite?Petrology and mineralogy of hypabyssal kimberlites[J]. Elements, 2019, 15(6): 381-386. |
49 | PEARSON D G, WOODHEAD J, JANNEY P E. Kimberlites as geochemical probes of Earth’s mantle[J]. Elements, 2019, 15(6): 387-392. |
50 | FOLEY S F, YAXLEY G M, KJARSGAARD B A. Kimberlites from source to surface: insights from experiments[J]. Elements, 2019, 15(6): 393-398. |
/
〈 |
|
〉 |