Research on Prediction Technologies for Overpressure in the Jurassic Strata of the Mosuowan Area, Junggar Basin

  • Tao WU ,
  • Zeyang XU ,
  • Wenqi YAN ,
  • Liying FEI ,
  • Hechong LIU ,
  • Jingzhou ZHAO ,
  • Jun LI ,
  • Zhiwei DU
Expand
  • 1.Exploration and Development Research Institute of PetroChina Xinjiang Oilfield Company, Karamay Xinjiang 834000, China
    2.Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi’an Shiyou University, Xi’an 710065, China
    3.College of Earth Sciences & Engineering, Xi’an Shiyou University, Xi’an 710065, China
WU Tao, Professor of engineering, research areas include the reservoir sedimentology and the petrolume geology. E-mail: wutao33@petrochina.com.cn
XU Zeyang, Postdoctor, research areas include the causes analysis and distribution prediction of overpressure. E-mail: xuzeyang@xsyu.edu.cn

Received date: 2023-07-11

  Revised date: 2024-02-25

  Online published: 2024-04-19

Supported by

the Prospective and Fundamental Project of Petro China(2021DJ0405)

Abstract

Overpressure is widespread in the Jurassic strata of the Mosuowan area in the Junggar Basin. Achieving precise pressure prediction with high accuracy is crucial for enhancing reservoir formation understanding and ensuring optimal drilling safety. However, existing pressure prediction methods are generally influenced, either directly or indirectly, by the causes of overpressure, leading to variations in their applicability. This study, based on the geological and logging response characteristics of the overpressured section, postulates that overpressure in the Jurassic strata of the Mosuowan area primarily originates from deep pressure transmission, with supplementary contributions from clay mineral transformation, while undercompaction plays a negligible role. Three pressure prediction models were selected: Fillippone, trend regression, and Bowers models. These models were compared for practical applications.

In conclusion, the Fillippone model is suitable for early-stage pressure monitoring while drilling without reference wells; the Bowers model is recommended when there are limited reference wells available. In the late exploration stage, both trend regression and Bowers models can be utilized to investigate overpressure distribution.

Cite this article

Tao WU , Zeyang XU , Wenqi YAN , Liying FEI , Hechong LIU , Jingzhou ZHAO , Jun LI , Zhiwei DU . Research on Prediction Technologies for Overpressure in the Jurassic Strata of the Mosuowan Area, Junggar Basin[J]. Advances in Earth Science, 2024 , 39(4) : 429 -439 . DOI: 10.11867/j.issn.1001-8166.2024.026

References

1 SAYERS C M, JOHNSON G M, DENYER G. Predrill pore-pressure prediction using seismic data[J]. Geophysics, 2002, 67(4): 1 286-1 292.
2 FILLIPPONE W R. On the prediction of abnormally pressured sedimentary rocks from seismic data[C]// Offshore technology conference. Houston, Texas: OTC, 1979.
3 HAN D H, NUR A, MORGAN D. Effects of porosity and clay content on wave velocities in sandstones[J]. Geophysics, 1986, 51(11): 2 093-2 107.
4 EBERHART-PHILLIPS D, HAN D H, ZOBACK M D. Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone[J]. Geophysics, 1989, 54(1): 82-89.
5 FAN Honghai, ZHANG Chuanjin. New methods for calculation of pore pressure in complex geologic environment[J]. Petroleum Drilling Techniques, 2005, 33(5): 40-43.
5 樊洪海, 张传进. 复杂地层地层孔隙压力求取新技术[J]. 石油钻探技术, 2005, 33(5): 40-43.
6 LIU Zhen, ZHANG Wanxuan, ZHANG Houfu, et al. An analysis of abnormal formation pressures of Paleogene in the north sag of Liaoxi depression[J]. Acta Petrolei Sinica, 1993, 14(1): 14-24.
6 刘震, 张万选, 张厚福, 等. 辽西凹陷北洼下第三系异常地层压力分析[J]. 石油学报, 1993, 14(1): 14-24.
7 MAGARA K. Compaction and fluid migration[M]. Holland: Elsevier, 1978.
8 EATON B A. The effect of overburden stress on geopressure prediction from well logs[J]. Journal of Petroleum Technology, 1972, 24(8): 929-934.
9 BOWERS G L. Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion, 1995, 10(2): 89-95.
10 WU Haisheng, ZHENG Menglin, HE Wenjun, et al. Formation pressure anomalies and controlling factors in central Juggar Basin[J]. Oil & Gas Geology, 2017, 38(6): 1 135-1 146.
10 吴海生, 郑孟林, 何文军, 等. 准噶尔盆地腹部地层压力异常特征与控制因素[J]. 石油与天然气地质, 2017, 38(6): 1 135-1 146.
11 WU Tao, WANG Bin, FEI Liying, et al. Origin and distribution law of condensate gas reservoirs in Junggar Basin[J]. Acta Petrolei Sinica, 2021, 42(12): 1 640-1 653.
11 吴涛, 王彬, 费李莹, 等. 准噶尔盆地凝析气藏成因与分布规律[J]. 石油学报, 2021, 42(12): 1 640-1 653.
12 TANG Yong, SONG Yong, HE Wenjun, et al. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar Basin[J]. Oil & Gas Geology, 2022, 43(1): 132-148.
12 唐勇, 宋永, 何文军, 等. 准噶尔叠合盆地复式油气成藏规律[J]. 石油与天然气地质, 2022, 43(1): 132-148.
13 ZHAO Jingzhou, LI Jun, XU Zeyang. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9): 973-998.
13 赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017, 38(9): 973-998.
14 WUERNISAHAN Maimaitimin, LI Jun, ZHAO Jingzhou, et al. The study of Jurassic overpressure genesis in the Mosuowan Uplift of the Junggar Basin[J/OL]. Natural Gas Geoscience, 2024. [2024-01-26]. .
14 吾尔妮萨罕·麦麦提敏,李军,赵靖舟,等.准噶尔盆地莫索湾凸起侏罗系超压成因研究[J/OL].天然气地球科学, 2024. [2024-01-26]. .
15 DUTTA N C. Effect of chemical diagenesis on pore pressure in argillaceous sediment[J]. The Leading Edge, 2016, 35(6): 523-527.
16 XU Zeyang, ZHAO Jingzhou, LI Jun. The impact of organic matter content on overpressure analysis and its correction method in the first member of Cretaceous Qingshankou Formation, Placanticline area, Songliao Basin[J]. Oil & Gas Geology, 2019, 40(4): 938-946.
16 徐泽阳, 赵靖舟, 李军. 松辽盆地长垣地区白垩系青山口组一段有机质含量对超压分析的影响及校正方法[J]. 石油与天然气地质, 2019, 40(4): 938-946.
17 FILLIPPONE W R. Estimation of formation parameters and the prediction of overpressures from seismic data[C]// SEG technical program expanded abstracts 1982. Society of Exploration Geophysicists, 1982: 502-503.
Outlines

/