Research Progress on the Numerical Simulation at Gray-zone Scales of the Convective Boundary Layer
Received date: 2024-01-15
Revised date: 2024-02-21
Online published: 2024-04-01
Supported by
the National Natural Science Foundation of China(42375185);The Science and Technology Development Foundation of Chinese Academy of Meteorological Sciences(2022KJ017)
As computing power continues to improve, the horizontal grid resolution of numerical weather prediction models has reached the kilometer-to-sub-kilometer scale. This grid scale is comparable to the characteristic turbulent scales in the convective boundary layer, allowing the numerical models to resolve the organized convective structures. The assumptions of traditional one-dimensional boundary layer parameterization schemes (suitable for horizontal resolutions of several kilometers or coarser) and large eddy simulation three-dimensional turbulent closure schemes (suitable for horizontal resolutions below several tens of meters) do not hold at this scale, which is referred to as the gray zone. This study discusses the applicability and limitations of traditional parameterization methods and introduces the gray zone of the convective boundary layer from three perspectives: theory, methodological approaches, and impact. It summarizes the characteristics of the simulation methods at the CBL gray zone scale developed over the past two decades and explores the impact of the boundary layer process simulation at this scale on other physical processes (e.g., shallow/deep convection) in numerical models. Further, we anticipate future research directions and approaches.
Wei WEI , Jiayi BAI . Research Progress on the Numerical Simulation at Gray-zone Scales of the Convective Boundary Layer[J]. Advances in Earth Science, 2024 , 39(3) : 221 -231 . DOI: 10.11867/j.issn.1001-8166.2024.018
1 | STULL R B. An introduction to boundary layer meteorology[M]. Dordrecht: Springer Netherlands, 1988. |
2 | SHENG Peixuan, MAO Jietai, LI Jianguo, et al. Atmospheric physics[M]. 2nd ed. Beijing: Peking University Press, 2013. |
2 | 盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 2版. 北京: 北京大学出版社, 2013. |
3 | WYNGAARD J C. Toward numerical modeling in the “Terra incognita”[J]. Journal of the Atmospheric Sciences, 2004, 61(14): 1 816-1 826. |
4 | ZHOU B W, SIMON J S, CHOW F K. The convective boundary layer in the Terra incognita[J]. Journal of the Atmospheric Sciences, 2014, 71(7): 2 545-2 563. |
5 | GERMANO M. Turbulence: the filtering approach[J]. Journal of Fluid Mechanics, 1992, 238: 325-336. |
6 | WYNGAARD J C. Turbulence in the atmosphere[M]. Cambridge, UK: Cambridge University Press, 2010. |
7 | SULLIVAN P P, PATTON E G. The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation[J]. Journal of the Atmospheric Sciences, 2011, 68(10): 2 395-2 415. |
8 | SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3): 99-164. |
9 | LILLY D K. The representation of small-scale turbulence in numerical simulation experiments[C]. Pre-publication Review Copy, 1966. DOI:10.5065/D62R3PMM . |
10 | DEARDORFF J W. Stratocumulus-capped mixed layers derived from a three-dimensional model[J]. Boundary-Layer Meteorology, 1980, 18(4): 495-527. |
11 | BRETHERTON C S, PARK S. A new moist turbulence parameterization in the community atmosphere model[J]. Journal of Climate, 2009, 22(12): 3 422-3 448. |
12 | HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2 318-2 341. |
13 | COHEN A E, CAVALLO S M, CONIGLIO M C, et al. A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments[J]. Weather and Forecasting, 2015, 30(3): 591-612. |
14 | TROEN I B, MAHRT L. A simple model of the atmospheric boundary layer: sensitivity to surface evaporation[J]. Boundary-Layer Meteorology, 1986, 37(1): 129-148. |
15 | DEARDORFF J W. The counter-gradient heat flux in the lower atmosphere and in the laboratory[J]. Journal of the Atmospheric Sciences, 1966, 23(5): 503-506. |
16 | DEARDORFF J W. Parameterization of the planetary boundary layer for use in general circulation models[J]. Monthly Weather Review, 1972, 100(2): 93-106. |
17 | SIEBESMA A, TEIXEIRA J. An advection-diffusion scheme for the convective boundary layer: description and 1D results[C]// Physics, Engineering, Environmental Science, 2000. |
18 | SOARES P M M, MIRANDA P M A, SIEBESMA A P, et al. An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection[J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130(604): 3 365-3 383. |
19 | SIEBESMA A P, SOARES P M M, TEIXEIRA J. A combined eddy-diffusivity mass-flux approach for the convective boundary layer[J]. Journal of the Atmospheric Sciences, 2007, 64(4): 1 230-1 248. |
20 | PERGAUD J, MASSON V, MALARDEL S, et al. A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction[J]. Boundary-Layer Meteorology, 2009, 132(1): 83-106. |
21 | CHING J, ROTUNNO R, LEMONE M, et al. Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models[J]. Monthly Weather Review, 2014, 142(9): 3 284-3 302. |
22 | SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF version 3 [C]. NCAR Technical Note, 2008, 475: 113. |
23 | SHIN H H, DUDHIA J. Evaluation of PBL parameterizations in WRF at subkilometer grid spacings: turbulence statistics in the dry convective boundary layer[J]. Monthly Weather Review, 2016, 144(3): 1 161-1 177. |
24 | LIU Mengjuan, ZHANG Xu, CHEN Baode. Assessment of the suitability of planetary boundary layer schemes at “grey zone” resolutions[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(1): 52-69. |
24 | 刘梦娟, 张旭, 陈葆德. 边界层参数化方案在“灰色区域” 尺度下的适用性评估[J]. 大气科学, 2018, 42(1): 52-69. |
25 | CHOW F, SCH?R C, BAN N, et al. Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain[J]. Atmosphere, 2019, 10(5). DOI:10.3390/atmos10050274 . |
26 | RICARD D, LAC C, RIETTE S, et al. Kinetic energy spectra characteristics of two convection-permitting limited-area models AROME and Meso-NH[J]. Quarterly Journal of the Royal Meteorological Society, 2013, 139(674): 1 327-1 341. |
27 | SKAMAROCK W C. Evaluating mesoscale NWP models using kinetic energy spectra[J]. Monthly Weather Review, 2004, 132(12): 3 019-3 032. |
28 | HONNERT R, MASSON V, COUVREUX F. A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale[J]. Journal of the Atmospheric Sciences, 2011, 68(12): 3 112-3 131. |
29 | EFSTATHIOU G A, PLANT R S, BOPAPE M J M. Simulation of an evolving convective boundary layer using a scale-dependent dynamic smagorinsky model at near-gray-zone resolutions[J]. Journal of Applied Meteorology and Climatology, 2018, 57(9): 2 197-2 214. |
30 | de ROODE S R, DUYNKERKE P G, JONKER H J J. Large-eddy simulation: how large is large enough?[J]. Journal of the Atmospheric Sciences, 2004, 61(4): 403-421. |
31 | MALAVELLE F F, HAYWOOD J M, FIELD P R, et al. A method to represent subgrid-scale updraft velocity in kilometer-scale models: implication for aerosol activation[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(7): 4 149-4 173. |
32 | SHIN H H, HONG S Y. Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions[J]. Journal of the Atmospheric Sciences, 2013, 70(10): 3 248-3 261. |
33 | SENEL C B, TEMEL O, MU?OZ-ESPARZA D, et al. Gray zone partitioning functions and parameterization of turbulence fluxes in the convective atmospheric boundary layer[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(22). DOI:10.1029/2020JD033581 . |
34 | HONNERT R, MASSON V. What is the smallest physically acceptable scale for 1D turbulence schemes?[J]. Frontiers in Earth Science, 2014, 2. DOI:10.3389/feart.2014.00027 . |
35 | BEARE R J. A length scale defining partially-resolved boundary-layer turbulence simulations[J]. Boundary-Layer Meteorology, 2014, 151(1): 39-55. |
36 | EFSTATHIOU G A, BEARE R J. Quantifying and improving sub-grid diffusion in the boundary-layer grey zone[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(693): 3 006-3 017. |
37 | BOUTLE I A, EYRE J E J, LOCK A P. Seamless stratocumulus simulation across the turbulent gray zone[J]. Monthly Weather Review, 2014, 142(4): 1 655-1 668. |
38 | LOCK A P, BROWN A R, BUSH M R, et al. A new boundary layer mixing scheme. part I: scheme description and single-column model tests[J]. Monthly Weather Review, 2000, 128(9): 3 187-3 199. |
39 | EFSTATHIOU G A, BEARE R J, OSBORNE S, et al. Grey zone simulations of the morning convective boundary layer development[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(9): 4 769-4 782. |
40 | SHIN H H, HONG S Y. Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions[J]. Monthly Weather Review, 2015, 143(1): 250-271. |
41 | ITO J, NIINO H, NAKANISHI M, et al. An extension of the mellor-Yamada model to the Terra incognita zone for dry convective mixed layers in the free convection regime[J]. Boundary-Layer Meteorology, 2015, 157(1): 23-43. |
42 | ITO J, NIINO H, NAKANISHI M. Horizontal turbulent diffusion in a convective mixed layer[J]. Journal of Fluid Mechanics, 2014, 758: 553-564. |
43 | ZHANG X, BAO J W, CHEN B D, et al. A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW model[J]. Monthly Weather Review, 2018, 146(7): 2 023-2 045. |
44 | NAKANISHI M, NIINO H. Development of an improved turbulence closure model for the atmospheric boundary layer[J]. Journal of the Meteorological Society of Japan Series II, 2009, 87(5): 895-912. |
45 | WEI W, PENG X D, LIN Y L, et al. Extension and evaluation of university of Washington moist turbulence scheme to gray-zone scales[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(8). DOI:10.1029/2021MS002978 . |
46 | KITAMURA Y. Improving a turbulence scheme for the Terra incognita in a dry convective boundary layer[J]. Journal of the Meteorological Society of Japan Series II, 2016, 94(6): 491-506. |
47 | SHI X M, HAGEN H L, CHOW F K, et al. Large-eddy simulation of the stratocumulus-capped boundary layer with explicit filtering and reconstruction turbulence modeling[J]. Journal of the Atmospheric Sciences, 2018, 75(2): 611-637. |
48 | CHOW F K, STREET R L, XUE M, et al. Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow[J]. Journal of the Atmospheric Sciences, 2005, 62(7): 2 058-2 077. |
49 | VENAYAGAMOORTHY S K, STRETCH D D. On the turbulent Prandtl number in homogeneous stably stratified turbulence[J]. Journal of Fluid Mechanics, 2010, 644: 359-369. |
50 | BOU-ZEID E, MENEVEAU C, PARLANGE M. A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows[J]. Physics of Fluids, 2005, 17(2). DOI:10.1063/1.1839152 . |
51 | SIMON J S, ZHOU B W, MIROCHA J D, et al. Explicit filtering and reconstruction to reduce grid dependence in convective boundary layer simulations using WRF-LES[J]. Monthly Weather Review, 2019, 147(5): 1 805-1 821. |
52 | BROWN A R, BEARE R J, EDWARDS J M, et al. Upgrades to the boundary-layer scheme in the met office numerical weather prediction model[J]. Boundary-Layer Meteorology, 2008, 128(1): 117-132. |
53 | NOH Y, CHEON W G, HONG S Y, et al. Improvement of the K-profile Model for the planetary boundary layer based on large eddy simulation data[J]. Boundary-Layer Meteorology, 2003, 107(2): 401-427. |
54 | EFSTATHIOU G A, PLANT R S. A dynamic extension of the pragmatic blending scheme for scale-dependent sub-grid mixing[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(719): 884-892. |
55 | KUROWSKI M J, TEIXEIRA J. A scale-adaptive turbulent kinetic energy closure for the dry convective boundary layer[J]. Journal of the Atmospheric Sciences, 2018, 75(2): 675-690. |
56 | TEIXEIRA J, CHEINET S. A simple mixing length formulation for the eddy-diffusivity parameterization of dry convection[J]. Boundary-Layer Meteorology, 2004, 110(3): 435-453. |
57 | ZHOU B W, LI Y H, MIAO S G. A scale-adaptive turbulence model for the dry convective boundary layer[J]. Journal of the Atmospheric Sciences, 2021, 78(5): 1 715-1 733. |
58 | BOUGEAULT P, LACARRERE P. Parameterization of orography-induced turbulence in a mesobeta: scale model[J]. Monthly Weather Review, 1989, 117(8): 1 872-1 890. |
59 | ZHOU B W, LI Y H, ZHU K F. Improved length scales for turbulence kinetic energy-based planetary boundary layer scheme for the convective atmospheric boundary layer[J]. Journal of the Atmospheric Sciences, 2020, 77(7): 2 605-2 626. |
60 | MOENG C H. A large-eddy-simulation model for the study of planetary boundary-layer turbulence[J]. Journal of the Atmospheric Sciences, 1984, 41(13): 2 052-2 062. |
61 | KAIMAL J C, FINNIGAN J J. Atmospheric boundary layer flows: their structure and measurement[M]. New York: Oxford University Press, 1994. |
62 | ZHOU B W, XUE M, ZHU K F. A grid-refinement-based approach for modeling the convective boundary layer in the gray zone: a pilot study[J]. Journal of the Atmospheric Sciences, 2017, 74(11): 3 497-3 513. |
63 | O’NEILL J J, CAI X M, KINNERSLEY R. A generalised stochastic backscatter model: large-eddy simulation of the neutral surface layer[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(692): 2 617-2 629. |
64 | BIELLO J, KHOUIDER B, MAJDA A J. A stochastic multicloud model for tropical convection[J]. Communications in Mathematical Sciences, 2010, 8(1): 187-216. |
65 | PALMER T N. Towards the probabilistic Earth-system simulator: a vision for the future of climate and weather prediction[J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(665): 841-861. |
66 | WANG Y H, CHENG X P, FEI J F, et al. Modeling the shallow cumulus-topped boundary layer at gray zone resolutions[J]. Journal of the Atmospheric Sciences, 2022, 79(9): 2 435-2 451. |
67 | VERRELLE A, RICARD D, LAC C. Sensitivity of high-resolution idealized simulations of thunderstorms to horizontal resolution and turbulence parametrization[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(687): 433-448. |
68 | HANLEY K E, PLANT R S, STEIN T H M, et al. Mixing-length controls on high-resolution simulations of convective storms[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(686): 272-284. |
69 | MACHADO L A T, CHABOUREAU J P. Effect of turbulence parameterization on assessment of cloud organization[J]. Monthly Weather Review, 2015, 143(8): 3 246-3 262. |
70 | ITO J, HAYASHI S, HASHIMOTO A, et al. Stalled improvement in a numerical weather prediction model as horizontal resolution increases to the sub-kilometer scale[J]. SOLA, 2017, 13: 151-156. |
71 | VERRELLE A, RICARD D, LAC C. Evaluation and improvement of turbulence parameterization inside deep convective clouds at kilometer-scale resolution[J]. Monthly Weather Review, 2017, 145(10): 3 947-3 967. |
72 | MOENG C H. A closure for updraft-downdraft representation of subgrid-scale fluxes in cloud-resolving models[J]. Monthly Weather Review, 2014, 142(2): 703-715. |
73 | STRAUSS C, RICARD D, LAC C, et al. Evaluation of turbulence parametrizations in convective clouds and their environment based on a large-eddy simulation[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(724): 3 195-3 217. |
74 | SHI X M, CHOW F K, STREET R L, et al. Key elements of turbulence closures for simulating deep convection at kilometer-scale resolution[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(3): 818-838. |
75 | SUN S W, ZHOU B W, XUE M, et al. Scale-similarity subgrid-scale turbulence closure for supercell simulations at kilometer-scale resolutions: comparison against a large-eddy simulation[J]. Journal of the Atmospheric Sciences, 2021, 78(2): 417-437. |
76 | KEALY J C, EFSTATHIOU G A, BEARE R J. The onset of resolved boundary-layer turbulence at grey-zone resolutions[J]. Boundary-Layer Meteorology, 2019, 171(1): 31-52. |
/
〈 |
|
〉 |