Tropospheric Ozone Retrieval from Satellite Remote Sensing—A Review
Received date: 2023-08-30
Revised date: 2023-11-26
Online published: 2024-01-16
Supported by
the National Natural Science Foundation of China(42375142);The National Civil Space Infrastructure Project(Y5BZ31AC60)
Ozone is among the most important trace gases in Earth’s atmosphere and plays a crucial role in both climate change and ecology. Tropospheric ozone is an important component of photochemical smog, and its variations are closely related to human activity. Monitoring of tropospheric ozone based on satellite remote sensing can help us better understand and quantitatively explain the characteristics of tropospheric ozone changes in different seasons, times, and regions, and explore the mechanism of ozone generation in the troposphere. With the comprehensive development of satellite remote sensing techniques, ozone remote sensing products (e.g., total ozone, profiles, etc.) have improved significantly in terms of accuracy and spatiotemporal resolution. However, the accuracy of tropospheric ozone products is still not sufficient for the current scientific application of the atmospheric composition of the troposphere due to the weak satellite signals and complexity of the subsurface. This review focuses on satellite remote sensing of tropospheric ozone. It outlines and analyzes the development history and current status of ozone satellite remote sensing payloads and discusses the characteristics and applicability of remote sensing retrieval algorithms based on different technologies (direct and indirect retrieval, multiband joint retrieval, collaborated nadir-limb retrieval, and innovative algorithms based on machine learning techniques). It further discusses the application of satellite remote sensing for the provision of reliable tropospheric ozone observation data at the global and regional scales. Overall, this review envisions the application of satellite remote sensing for providing reliable tropospheric ozone observations at the global and regional scales.
Jian XU , Zhuo ZHANG , Lanlan RAO , Yapeng WANG , Huanhuan YAN , LETU HUSI , Chong SHI , Song LIU , TANA GEGEN , Wenyu WANG , Entao SHI , Shun YAO , Jun ZHU , Yongmei WANG , Xiaolong DONG , Jiancheng SHI . Tropospheric Ozone Retrieval from Satellite Remote Sensing—A Review[J]. Advances in Earth Science, 2024 , 39(1) : 56 -70 . DOI: 10.11867/j.issn.1001-8166.2024.002
1 | ARCHIBALD A T, NEU J L, ELSHORBANY Y F, et al. Tropospheric ozone assessment report: a critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100 [J]. Elementa: Science of the Anthropocene, 2020, 8(1). DOI: 10.1525/elementa.2020.034 . |
2 | CHANG W Y, LIAO H, WANG H J. Climate responses to direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases in Eastern China over 1951-2000[J]. Advances in Atmospheric Sciences, 2009, 26(4): 748-762. |
3 | CHEN W T, LIAO H, SEINFELD J H. Future climate impacts of direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D14). DOI: 10.1029/2006JD008051 . |
4 | GRIFFITHS P T, KEEBLE J, SHIN Y M, et al. On the changing role of the stratosphere on the tropospheric ozone budget: 1979-2010[J]. Geophysical Research Letters, 2020, 47(10). DOI:10.1029/2019GL086901 . |
5 | HESS P G, ZBINDEN R. Stratospheric impact on tropospheric ozone variability and trends: 1990-2009[J]. Atmospheric Chemistry and Physics, 2013, 13(2): 649-674. |
6 | ZHANG Y Q, COOPER O R, GAUDEL A, et al. Tropospheric ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions[J]. Nature Geoscience, 2016, 9(12): 875-879. |
7 | DING A J, WANG T, THOURET V, et al. Tropospheric ozone climatology over Beijing: analysis of aircraft data from the MOZAIC program[J]. Atmospheric Chemistry and Physics, 2008, 8(1): 1-13. |
8 | LIU Y M, WANG T. Worsening urban ozone pollution in China from 2013 to 2017-Part 1: the complex and varying roles of meteorology[J]. Atmospheric Chemistry and Physics, 2020, 20(11): 6 305-6 321. |
9 | FAN H, ZHAO C F, YANG Y K. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014-2018[J]. Atmospheric Environment, 2020, 220. DOI: 10.1016/j.atmosenv.2019.117066 . |
10 | ORFANOZ-CHEUQUELAF A, ROZANOV A, WEBER M, et al. Total ozone column from Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) measurements using the broadband Weighting Function Fitting Approach (WFFA)[J]. Atmospheric Measurement Techniques, 2021, 14(8): 5 771-5 789. |
11 | THOMPSON A M, WITTE J C, OLTMANS S J, et al. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2000 tropical ozone climatology 2. tropospheric variability and the zonal wave-one[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D2). DOI: 10.1029/2002JD002241 . |
12 | THOMPSON A M, WITTE J C, McPETERS R D, et al. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2000 tropical ozone climatology 1. comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D2). DOI: 10.1029/2001JD000967 . |
13 | FIOLETOV V E, KERR J B, HARE E W, et al. An assessment of the world ground-based total ozone network performance from the comparison with satellite data[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D1): 1 737-1 747. |
14 | ZHANG Xingying, ZHANG Peng, FANG Zongyi, et al. The progress in trace gas remote sensing study based on the satellite monitoring[J]. Meteorological Monthly, 2007, 33(7): 3-14. |
14 | 张兴赢, 张鹏, 方宗义, 等. 应用卫星遥感技术监测大气痕量气体的研究进展[J]. 气象, 2007, 33(7): 3-14. |
15 | ZHAO Shaohua, YANG Xiaoyu, LI Zhengqiang, et al. Advances of ozone satellite remote sensing in 60 years[J]. Journal of Remote Sensing, 2022, 26(5): 817-833. |
15 | 赵少华, 杨晓钰, 李正强, 等. 臭氧卫星遥感六十年进展[J]. 遥感学报, 2022, 26(5): 817-833. |
16 | CHI Yulei, ZHAO Chuanfeng. Progress and challenges of ozone satellite remote sensing inversion[J]. Acta Optica Sinica, 2023, 43(18). DOI: 10.3788/AOS230583 . |
16 | 迟雨蕾, 赵传峰. 臭氧卫星遥感反演进展及挑战[J]. 光学学报, 2023, 43(18). DOI: 10.3788/AOS230583 . |
17 | METTIG N, WEBER M, ROZANOV A, et al. Ozone profile retrieval from nadir TROPOMI measurements in the UV range[J]. Atmospheric Measurement Techniques, 2021, 14(9): 6 057-6 082. |
18 | VERSTRAETEN W W, BOERSMA K F, Z?RNER J, et al. Validation of six years of TES tropospheric ozone retrievals with ozonesonde measurements: implications for spatial patterns and temporal stability in the bias[J]. Atmospheric Measurement Techniques, 2013, 6(5): 1 413-1 423. |
19 | NASSAR R, LOGAN J A, MEGRETSKAIA I A, et al. Analysis of tropical tropospheric ozone, carbon monoxide, and water vapor during the 2006 El Ni?o using TES observations and the GEOS-Chem model[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D17). DOI: 10.1029/2009JD011760 . |
20 | RAWAT P, NAJA M, FISHBEIN E, et al. Performance of AIRS ozone retrieval over the central Himalayas: use of ozonesonde and other satellite datasets[J]. Atmospheric Measurement Techniques, 2023, 16(4): 889-909. |
21 | METTIG N, WEBER M, ROZANOV A, et al. Combined UV and IR ozone profile retrieval from TROPOMI and CrIS measurements[J]. Atmospheric Measurement Techniques, 2022, 15(9): 2 955-2 978. |
22 | WESPES C, HURTMANS D, CLERBAUX C, et al. O3 variability in the troposphere as observed by IASI over 2008-2016: contribution of atmospheric chemistry and dynamics[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(4): 2 429-2 451. |
23 | DUFOUR G, EREMENKO M, BEEKMANN M, et al. Lower tropospheric ozone over the North China Plain: variability and trends revealed by IASI satellite observations for 2008-2016[J]. Atmospheric Chemistry and Physics, 2018, 18(22): 16 439-16 459. |
24 | OKAMOTO S, CUESTA J, BEEKMANN M, et al. Impact of different sources of precursors on an ozone pollution outbreak over Europe analysed with IASI+GOME2 multispectral satellite observations and model simulations[J]. Atmospheric Chemistry and Physics, 2023, 23(13): 7 399-7 423. |
25 | MUNRO R, SIDDANS R, REBURN W J, et al. Direct measurement of tropospheric ozone distributions from space[J]. Nature, 1998, 392(6 672): 168-171. |
26 | HOOGEN R, ROZANOV V V, BURROWS J P. Ozone profiles from GOME satellite data: algorithm description and first validation[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D7): 8 263-8 280. |
27 | HASEKAMP O P, LANDGRAF J. Ozone profile retrieval from backscattered ultraviolet radiances: the inverse problem solved by regularization[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D8): 8 077-8 088. |
28 | van der A R J, van OSS R F, PITERS A J M, et al. Ozone profile retrieval from recalibrated Global Ozone Monitoring Experiment data[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D15). DOI: 10.1029/2001JD000696 . |
29 | MüLLER M D, KAIFEL A K, WEBER M, et al. Ozone profile retrieval from Global Ozone Monitoring Experiment (GOME) data using a neural network approach (Neural Network Ozone Retrieval System (NNORSY))[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D16). DOI: 10.1029/2002JD002784 . |
30 | LIU X, CHANCE K, SIORIS C E, et al. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: algorithm description and validation[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D20). DOI: 10.1029/2005JD006240 . |
31 | MILES G M, SIDDANS R, KERRIDGE B J, et al. Tropospheric ozone and ozone profiles retrieved from GOME-2 and their validation[J]. Atmospheric Measurement Techniques, 2015, 8(1): 385-398. |
32 | LIU X, BHARTIA P K, CHANCE K, et al. Ozone profile retrievals from the ozone monitoring instrument[J]. Atmospheric Chemistry and Physics, 2010, 10(5): 2 521-2 537. |
33 | FISHMAN J, BOWMAN K W, BURROWS J P, et al. Remote sensing of tropospheric pollution from space[J]. Bulletin of the American Meteorological Society, 2008, 89(6): 805-822. |
34 | ZHAO F, LIU C, CAI Z N, et al. Ozone profile retrievals from TROPOMI: implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China[J]. Science of the Total Environment, 2021, 764. DOI: 10.1016/j.scitotenv.2020.142886 . |
35 | XU J, SCHüSSLER O, RODRIGUEZ D G L, et al. A novel ozone profile shape retrieval using Full-Physics Inverse Learning Machine (FP-ILM)[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5 442-5 457. |
36 | FISHMAN J, LARSEN J C. Distribution of total ozone and stratospheric ozone in the tropics: implications for the distribution of tropospheric ozone[J]. Journal of Geophysical Research: Atmospheres, 1987, 92(D6): 6 627-6 634. |
37 | FISHMAN J, BRACKETT V G, BROWELL E V, et al. Tropospheric ozone derived from TOMS/SBUV measurements during TRACE A[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D19): 24 069-24 082. |
38 | ZIEMKE J R, CHANDRA S, DUNCAN B N, et al. Tropospheric ozone determined from Aura OMI and MLS: evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D19). DOI: 10.1029/2006JD007089 . |
39 | FROIDEVAUX L, LIVESEY N J, READ W G, et al. Early validation analyses of atmospheric profiles from EOS MLS on the aura satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1 106-1 121. |
40 | XU Jun, LU Yimin. Inversion of tropospheric ozone over China based on OMI data[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2021, 13(6): 707-719. |
40 | 徐军, 卢毅敏. 一种基于OMI数据的中国区域对流层O3的反演方法[J]. 南京信息工程大学学报(自然科学版), 2021, 13(6): 707-719. |
41 | ZIEMKE J R, CHANDRA S, BHARTIA P K. Two new methods for deriving tropospheric column ozone from TOMS measurements: assimilated UARS MLS/HALOE and convective-cloud differential techniques[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D17): 22 115-22 127. |
42 | VALKS P J M, KOELEMEIJER R B A, van WEELE M, et al. Variability in tropical tropospheric ozone: analysis with Global Ozone Monitoring Experiment observations and a global model[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D11). DOI: 10.1029/2002JD002894 . |
43 | VALKS P, HAO N, GIMENO GARCIA S, et al. Tropical tropospheric ozone column retrieval for GOME-2[J]. Atmospheric Measurement Techniques, 2014, 7(8): 2 513-2 530. |
44 | ZIEMKE J R, CHANDRA S, BHARTIA P K. “Cloud slicing”: a new technique to derive upper tropospheric ozone from satellite measurements[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D9): 9 853-9 867. |
45 | ZIEMKE J R, CHANDRA S, BHARTIA P K. A 25-year data record of atmospheric ozone in the Pacific from Total Ozone Mapping Spectrometer (TOMS) cloud slicing: implications for ozone trends in the stratosphere and troposphere[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D15). DOI: 10.1029/2004JD005687 . |
46 | ZIEMKE J R, CHANDRA S, DUNCAN B N, et al. Recent biomass burning in the tropics and related changes in tropospheric ozone[J]. Geophysical Research Letters, 2009, 36(15). DOI: 10.1029/2009GL039303 . |
47 | FISHMAN J, BALOK A E. Calculation of daily tropospheric ozone residuals using TOMS and empirically improved SBUV measurements: application to an ozone pollution episode over the eastern United States[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D23): 30 319-30 340. |
48 | HEUE K P, LOYOLA D, ROMAHN F, et al. Tropospheric ozone retrieval by a combination of TROPOMI/S5P measurements with BASCOE assimilated data[J]. Atmospheric Measurement Techniques, 2022, 15(19): 5 563-5 579. |
49 | ZIEMKE J R, OMAN L D, STRODE S A, et al. Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation[J]. Atmospheric Chemistry and Physics, 2019, 19(5): 3 257-3 269. |
50 | BURROWS J P, BOVENSMANN H, BERGAMETTI G, et al. The geostationary tropospheric pollution explorer (GeoTROPE) mission: objectives, requirements and mission concept[J]. Advances in Space Research, 2004, 34(4): 682-687. |
51 | LANDGRAF J, HASEKAMP O P. Retrieval of tropospheric ozone: the synergistic use of thermal infrared emission and ultraviolet reflectivity measurements from space[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D8). DOI: 10.1029/2006JD008097 . |
52 | WORDEN H M, LOGAN J A, WORDEN J R, et al. Comparisons of Tropospheric Emission Spectrometer (TES) ozone profiles to ozonesondes: methods and initial results[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D3). DOI: 10.1029/2006JD007258 . |
53 | FU D, WORDEN J R, LIU X, et al. Characterization of ozone profiles derived from Aura TES and OMI radiances[J]. Atmospheric Chemistry and Physics, 2013, 13(6): 3 445-3 462. |
54 | CUESTA J, EREMENKO M, LIU X, et al. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe[J]. Atmospheric Chemistry and Physics, 2013, 13(19): 9 675-9 693. |
55 | CUESTA J, KANAYA Y, TAKIGAWA M, et al. Transboundary ozone pollutionacross East Asia: daily evolution and photochemical production analysed by IASI+GOME2 multispectralsatellite observations and models[J]. Atmospheric Chemistry and Physics, 2018, 18(13): 9 499-9 525. |
56 | COSTANTINO L, CUESTA J, EMILI E, et al. Potential of multispectral synergism for observing ozone pollution by combining IASI-NG and UVNS measurements from the EPS-SG satellite[J]. Atmospheric Measurement Techniques, 2017, 10(4): 1 281-1 298. |
57 | FU D J, KULAWIK S S, MIYAZAKI K, et al. Retrievals of tropospheric ozone profiles from the synergism of AIRS and OMI: methodology and validation[J]. Atmospheric Measurement Techniques, 2018, 11(10): 5 587-5 605. |
58 | XU J, SCHREIER F, DOICU A, et al. Deriving stratospheric trace gases from balloon-borne infrared/microwave limb sounding measurements[C]// Radiation processes in the atmosphere and ocean (IRS2012): proceedings of the International Radiation Symposium (IRC/IAMAS). Dahlem: Free University, 2013: 392-395. |
59 | XU JIAN. Inversion for limb infrared atmospheric sounding[M]. Munich: Technische Universit¨at Munchen, 2016. |
60 | XU J, SCHREIER F, DOICU A, et al. Assessment of Tikhonov-type regularization methods for solving atmospheric inverse problems[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184: 274-286. |
61 | XU J, RAO L L, SCHREIER F, et al. Insight into construction of Tikhonov-type regularization for atmospheric retrievals[J]. Atmosphere, 2020, 11(10). DOI: 10.3390/atmos11101052 . |
62 | SOFIEVA V F, H?NNINEN R, SOFIEV M, et al. Synergy of using nadir and limb instruments for tropospheric ozone monitoring (SUNLIT)[J]. Atmospheric Measurement Techniques, 2022, 15(10): 3 193-3 212. |
63 | XU J, SCHREIER F, WETZEL G, et al. Performance assessment of balloon-borne trace gas sounding with the terahertz channel of TELIS[J]. Remote Sensing, 2018, 10(2). DOI: 10.3390/rs10020315 . |
64 | MüLLER M D, KAIFEL A, WEBER M, et al. Neural network scheme for the retrieval of total ozone from Global Ozone Monitoring Experiment data[J]. Applied Optics, 2002, 41(24). DOI: 10.1364/AO.41.005051 . |
65 | del FRATE F, ORTENZI A, CASADIO S, et al. Application of neural algorithms for a real-time estimation of ozone profiles from GOME measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(10): 2 263-2 270. |
66 | del FRATE F, IAPAOLO M, CASADIO S, et al. Neural networks for the dimensionality reduction of GOME measurement vector in the estimation of ozone profiles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 92(3): 275-291. |
67 | del FRATE F, IAPAOLO M, CASADIO S. Intercomparison between GOME ozone profiles retrieved by neural network inversion schemes and ILAS products[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22: 1 433-1 440. |
68 | IAPAOLO M, GODIN-BEEKMANN S, del FRATE F, et al. Gome ozone profiles retrieved by neural network techniques: a global validation with lidar measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 107(1): 105-119. |
69 | SELLITTO P, BOJKOV B R, LIU X, et al. Tropospheric ozone column retrieval at northern mid-latitudes from the Ozone Monitoring Instrument by means of a neural network algorithm[J]. Atmospheric Measurement Techniques, 2011, 4(11): 2 375-2 388. |
70 | SELLITTO P, del FRATE F, SOLIMINI D, et al. Tropospheric ozone column retrieval from ESA-envisat SCIAMACHY nadir UV/VIS radiance measurements by means of a neural network algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 998-1 011. |
71 | NOIA A D, SELLITTO P, del FRATE F, et al. Global tropospheric ozone column retrievals from OMI data by means of neural networks[J]. Atmospheric Measurement Techniques, 2013, 6(4): 895-915. |
72 | SELLITTO P, NOIA A D, del FRATE F, et al. On the role of visible radiation in ozone profile retrieval from nadir UV/VIS satellite measurements: an experiment with neural network algorithms inverting SCIAMACHY data[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113(12): 1 429-1 436. |
73 | ZHAN Y, LUO Y Z, DENG X F, et al. Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment[J]. Environmental Pollution, 2018, 233: 464-473. |
74 | LIU R Y, MA Z W, LIU Y, et al. Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: a machine learning approach[J]. Environment International, 2020, 142. DOI: 10.1016/j.envint.2020.105823 . |
75 | WEI J, LI Z Q, LI K, et al. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China[J]. Remote Sensing of Environment, 2022, 270. DOI: 10.1016/j.rse.2021.112775 . |
76 | KLEINERT F, LEUFEN L H, SCHULTZ M G. IntelliO3-ts v1.0: a neural network approach to predict near-surface ozone concentrations in Germany[J]. Geoscientific Model Development, 2021, 14(1): 1-25. |
77 | SAYEED A, CHOI Y, ESLAMI E, et al. Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance[J]. Neural Networks, 2020, 121: 396-408. |
78 | COMRIE A C. Comparing neural networks and regression models for ozone forecasting[J]. Journal of the Air & Waste Management Association, 1997, 47(6): 653-663. |
79 | COBOURN W G, DOLCINE L, FRENCH M, et al. A comparison of nonlinear regression and neural network models for ground-level ozone forecasting[J]. Journal of the Air & Waste Management Association, 2000, 50(11): 1 999-2 009. |
80 | SCHMITZ S, TOWERS S, VILLENA G, et al. Unravelling a black box: an open-source methodology for the field calibration of small air quality sensors[J]. Atmospheric Measurement Techniques, 2021, 14(11): 7 221-7 241. |
81 | WANG W N, van der A R, DING J Y, et al. Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations[J]. Atmospheric Chemistry and Physics, 2021, 21(9): 7 253-7 269. |
82 | KELLER C A, EVANS M J, KUTZ J N, et al. Machine learning and air quality modeling[C]// 2017 IEEE international conference on big data (big data). Boston MA: IEEE, 2017: 4 570-4 576. |
83 | KELLER C A, EVANS M J. Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10[J]. Geoscientific Model Development, 2019, 12(3): 1 209-1 225. |
84 | WILKINSON S, DAVIES W J. Drought, ozone, ABA and ethylene: new insights from cell to plant to community[J]. Plant, Cell & Environment, 2010, 33(4): 510-525. |
85 | LI T W, CHENG X. Estimating daily full-coverage surface ozone concentration using satellite observations and a spatiotemporally embedded deep learning approach[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101. DOI: 10.1016/j.jag.2021.102356 . |
86 | WANG S C, HUO Y F, MU X, et al. A high-performance convolutional neural network for ground-level ozone estimation in Eastern China[J]. Remote Sensing, 2022, 14(7). DOI: 10.3390/rs14071640 . |
87 | ZHU S Y, XU J, YU C, et al. Learning surface ozone from satellite columns (LESO): a regional daily estimation framework for surface ozone monitoring in China[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11. |
88 | ZHU S Y, XU J, ZENG J Y, et al. Satellite-derived estimates of surface ozone by LESO: extended application and performance evaluation[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 113. DOI: 10.1016/j.jag.2022.103008 . |
89 | ZHU S Y, XU J, FAN M, et al. Estimating near-surface concentrations of major air pollutants from space: a universal estimation framework LAPSO[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-11. |
/
〈 |
|
〉 |