Using CiteSpace to Visualize Black Shale Research of China

  • Qingshan WANG ,
  • Chao CHANG ,
  • Laiyuan WU ,
  • Xingliang ZHANG
Expand
  • State Key Laboratory of the Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi’an 710069, China
WANG Qingshan, Master student, research area includes paleontology and stratigraphy. E-mail: wangqingshan@stumail.nwu.edu.cn
ZHANG Xingliang, Professor, research area includes direction of early life and environment and geobiology. E-mail: xzhang69@nwu.edu.cn

Received date: 2023-07-05

  Revised date: 2023-11-09

  Online published: 2023-12-26

Supported by

the National Natural Science Foundation of China(42242201);The Shaanxi Provincial Natural Science Basic Research Program(2022JC-DW5-01)

Abstract

Black shale is the product of the joint action of life and non-life processes under the condition of multi-circle linkage in the deep inside and on the surface of the Earth and contains abundant energy resources indispensable for social development. To comprehensively understand the research status of black shale in China, clarify the notable research topics, deeply assess the research frontiers and hot spots, and grasp their development trends; a knowledge graph analysis of the literature on black shale in China included in the CNKI (1 466 articles) and Web of Science (1 069 articles) databases was performed using CiteSpace visualization software. The results showed that the number of published papers has increased annually since the beginning of this century, inter-institutional and international cooperation has gradually strengthened, and academic influence has notably expanded. The core research topics included shale gas, Longmaxi Formation, the Sichuan Basin, and other keywords. The research frontier clusters cover 12 subdomains, including “Southern North China Basin”, “Wufeng-Longmaxi Formation”, “Ordovician-Silurian Transition”, “Early Cambrian”, “Ni-Mo Polymetallic Sulfide Bed”, “Ediacaran Radiogenic Sr Isotope Excursion”, “Ordovician-Silurian Wufeng-Longmaxi Shale”, “Ordos”, “South China”, “Shale Gas Potential”, “Cambrian Facies”, and “Early Cambrian Black Shale”. The research on black shale in China is concluded to be in a stage of rapid development, with the most notable research discipline being petroleum geology. The hottest research area is the Sichuan Basin, and the hottest strata include the Wufeng-Longmaxi and Niutitang formations. Frontier research topics have shifted from mineral deposits and sedimentology to petroleum geology. Overall, biased attention has been given to black shale research in China in terms of the discipline, targeted regions, and strata. Multidisciplinary collaborative research remains rare, and its scientific strengths require to be adequately explored. In addition, the study of black shale has been mainly limited to sedimentary environments and redox conditions, whereas the sedimentary processes and mechanisms have not been adequately studied. Currently, an urgent requirement prevailsto strengthen interdisciplinary cooperation and integration and perform major comprehensive research projects on black shale to lead scientific research frontiers and serve the developmental needs of our country.

Cite this article

Qingshan WANG , Chao CHANG , Laiyuan WU , Xingliang ZHANG . Using CiteSpace to Visualize Black Shale Research of China[J]. Advances in Earth Science, 2023 , 38(12) : 1224 -1242 . DOI: 10.11867/j.issn.1001-8166.2023.083

References

1 WIGNALL P B. Black shales[M]. Oxford: Clarendon Press, 1994.
2 PETERS S E, QUINN D P, HUSSON J M, et al. Macrostratigraphy: insights into cyclic and secular evolution of the earth-life system[J]. Annual Review of Earth and Planetary Sciences, 2022, 50: 419-449.
3 SCHIEBER J. Black shales[M]// MIDDLETON G V, CHURCH M J, CONIGLIO M, et al. Encyclopedia of sediments and sedimentary rocks encyclopedia of Earth sciences. Dordrecht: Springer, 1978.
4 ZHANG X L. Uncover the black box of black shales[J]. The Innovation Geoscience, 2023, 1(1). DOI:10.59717/j.xinn-geo.2023.100005 .
5 LI Zhixing, QIN Mingkuan, LIU Xinyang, et al. Characteristics, genesis and research significance of multi-element enrichment layer of black rock system[J]. World Nuclear Geology, 2022, 39(1): 14-26.
5 李治兴, 秦明宽, 刘鑫扬, 等. 黑色岩系多元素富集层特征、成因和研究意义[J]. 世界核地质科学, 2022, 39(1): 14-26.
6 TIAN Xin, ZHANG Leichun, LI Xiaoyan, et al. Progress in international shale gas research: based on bibliometric analysis[J]. Natural Gas Geoscience, 2014, 25(11): 1 804-1 810.
6 田欣, 张蕾春, 李小燕, 等. 国际页岩气研究进展:基于文献计量分析[J]. 天然气地球科学, 2014, 25(11): 1 804-1 810.
7 JIN Shengxi, LIN Zhengjun. Graph analysis of scientific knowledge graph of international metonymy research dynamics(2007-2016)[J]. Journal of Foreign Language Research, 2017, 34(3): 18-23.
7 金胜昔, 林正军. 国际转喻研究动态的科学知识图谱分析(2007—2016)[J]. 外语研究, 2017, 34(3):18-23.
8 YANG Hui, ZHANG Yong. Knowledge graph analysis of shale gas research in China[J]. China Coal Geology, 2017, 29(4):18-22,61.
8 杨辉, 张勇. 我国页岩气研究的知识图谱分析[J]. 中国煤炭地质, 2017, 29(4):18-22,61.
9 YANG Zhenheng. Research hotspot of shale gas in foreign countries: research based on visual literature analysis software RefViz[J]. Computer Applications in Petroleum Industry, 2010(2): 30-32.
9 杨振恒. 国外页岩气研究热点——基于可视化文献分析软件RefViz的研究[J]. 石油工业计算机应用, 2010(2): 30-32.
10 LI Jie, CHEN Chaomei. CiteSpace: text mining and visualization in scientific literature[M]. Beijing: Capital University of Economics & Business Press, 2016.
10 李杰, 陈超美. CiteSpace:科技文本挖掘及可视化[M]. 北京: 首都经济贸易大学出版社, 2016.
11 REN Yongcan, ZHANG Jianwei, ZHAO Hui. A comparative study on team creativity at home and abroad since the 21st century[J]. Research Management, 2022, 43(11): 65-72.
11 任永灿, 张建卫, 赵辉. 21世纪以来国内外团队创造力的比较研究[J]. 科研管理, 2022, 43(11): 65-72.
12 Ventilator Safety Teaching and Research Group, Department of Mining, China Institute of Mining and Metallurgy. Study on spontaneous combustion factors of black shale of Tanxiang manganese ore[J]. Journal of Central South University (Natural Science Edition), 1959(1): 49-56.
12 中国矿冶学院采矿系通风及安全教研组. 潭湘锰矿黑色页岩自燃因素研究[J]. 中南大学学报(自然科学版), 1959(1): 49-56.
13 JIN Shengxi, LIN Zhengjun. Bibliometric analysis of domestic translation cognition research[J]. Foreign Language Teaching, 2016, 37(5): 96-101.
13 金胜昔, 林正军. 国内翻译认知研究的文献计量分析[J]. 外语教学, 2016, 37(5): 96-101.
14 CHEN Shaopeng, DUAN Yuefang. Current situation, hotspots and trends of China’s agricultural carbon effect research[J]. Advances in Earth Science, 2023, 38(1): 86-98.
14 陈少鹏, 段跃芳. 中国农业碳效应研究的现状、热点与趋势[J]. 地球科学进展, 2023, 38(1): 86-98.
15 QIU Junping, Hong Lü. Research on the development of domestic knowledge management based on knowledge graph[J]. Journal of the Chinese Society for Information Technology, 2013, 32(5): 548-560.
15 邱均平, 吕红. 基于知识图谱的国内知识管理发展研究[J]. 情报学报, 2013, 32(5): 548-560.
16 FAN Delian, YANG Xiuzhen, WANG Lianfang, et al. Petrological and geochemical characteristics of nickel-molybdenum multi-element black rock system in an underground Cambrian system[J]. Geochemistry, 1973(3): 143-164.
16 范德廉, 杨秀珍, 王连芳, 等. 某地下寒武统含镍钼多元素黑色岩系的岩石学及地球化学特点[J]. 地球化学, 1973(3): 143-164.
17 ZHANG Jinchuan, XU Bo, NIE Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008(6):136-140,159-160.
17 张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008(6): 136-140,159-160.
18 QIU Jiawen, LIU Shugen, SUN Wei, et al. Characteristics of black shale micropores of Wufeng Formation-Longmaxi Formation in Sichuan Basin[J]. Geological Science and Technology Information, 2015, 34(2): 78-86.
18 邱嘉文, 刘树根, 孙玮, 等. 四川盆地周缘五峰组—龙马溪组黑色页岩微孔特征[J]. 地质科技情报, 2015, 34(2): 78-86.
19 ZOU Caineng, ZHAO Qun, DONG Dazhong, et al. Basic characteristics, main challenges and future prospects of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1 781-1 796.
19 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1 781-1 796.
20 WU Jin, WANG Hongyan, SHI Zhensheng, et al. Dominant lithofacies types and genesis mechanisms of black shale in land-sea transitional facies: a case study of Permian Shanxi Formation in the eastern margin of Ordos Basin[J]. Petroleum Exploration and Development, 2021, 48(6): 1 137-1 149.
20 武瑾, 王红岩, 施振生, 等. 海陆过渡相黑色页岩优势岩相类型及成因机制——以鄂尔多斯盆地东缘二叠系山西组为例[J]. 石油勘探与开发, 2021, 48(6): 1 137-1 149.
21 LI Qiqi, XU Shang. Research status and prospect of sea-land transitional shale reservoirs[J]. Geological Bulletin of China, 2022, 41(8): 1 417-1 429.
21 李琪琪, 徐尚. 海陆过渡相页岩储层研究现状与展望[J]. 地质通报, 2022, 41(8): 1 417-1 429.
22 CAI Guangyin, JIANG Yuqiang, LI Xingtao, et al. Differences in the characteristics of ocean-land transition facies and marine organic-rich shale reservoirs[J]. Journal of Sedimentology, 2022, 40(4): 1 030-1 042.
22 蔡光银, 蒋裕强, 李星涛, 等. 海陆过渡相与海相富有机质页岩储层特征差异[J]. 沉积学报, 2022, 40(4): 1 030-1 042.
23 LI Jian, WANG Xiaobo, HOU Lianhua, et al. Natural gas geochemical characteristics and resource potential of shale gas in Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(8): 1 093-1 106.
23 李剑, 王晓波, 侯连华, 等. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1 093-1 106.
24 DONG Dazhong, QIU Zhen, ZHANG Leifu, et al. Research progress and new discoveries of shale gas formations in terrestrial and marine transitional facies[J]. Journal of Sedimentology, 2021, 39(1): 29-45.
24 董大忠, 邱振, 张磊夫, 等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报, 2021, 39(1): 29-45.
25 ZHANG Liehui, HE Xiao, LI Xiaogang, et al. Shale gas exploration and development in the Sichuan Basin: progress, challenge and countermeasures[J]. Natural Gas Industry, 2021, 41(8): 143-152.
25 张烈辉, 何骁, 李小刚, 等. 四川盆地页岩气勘探开发进展、挑战及对策[J]. 天然气工业, 2021, 41(8): 143-152.
26 ZHANG Jinchuan, TAO Jia, LI Zhen, et al. The prospect and exploration potential of deep shale gas resources in China[J]. Natural Gas Industry, 2021, 41(1): 15-28.
26 张金川, 陶佳, 李振, 等. 中国深层页岩气资源前景和勘探潜力[J]. 天然气工业, 2021, 41(1): 15-28.
27 ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8): 69-80.
27 张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 2021, 41(8): 69-80.
28 ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14.
28 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14.
29 WANG N, WEN L, LI M J, et al. The origin of abnormally 13C-depleted organic carbon isotope signatures in the early Cambrian Yangtze Platform[J]. Marine and Petroleum Geology, 2021, 128. DOI:10.1016/J.MARPETGEO.2021.105051 .
30 WU Kunyu, ZHANG Tingshan, YANG Yang, et al. Contribution of oxygenic photosynthesis to palaeo-oceanic organic carbon sink fluxes in Early Cambrian Upper Yangtze shallow sea: evidence from black shale record[J]. Journal of Earth Science, 2016, 27: 211-224.
31 ZHANG Shuichang, WANG Huajian, WANG Xiaomei, et al. Mesoproterozoic marine biocarbon pump:organic matter source, degradation and enrichment[J]. Chinese Science Bulletin, 2022, 67(15): 1 624-1 643.
31 张水昌, 王华建, 王晓梅, 等. 中元古代海洋生物碳泵:有机质来源、降解与富集[J]. 科学通报, 2022, 67(15): 1 624-1 643.
32 ZHANG Junpeng, LI Chao, ZHANG Yuandong. Geological record and background mechanism of marine hypoxia events in the early Paleozoic era[J]. Chinese Science Bulletin, 2022, 67(15): 1 644-1 659.
32 张俊鹏, 李超, 张元动.早古生代海洋缺氧事件的地质记录与背景机制[J]. 科学通报, 2022, 67(15): 1 644-1 659.
33 ZHAO Xianye, WANG Wei, GUAN Chengguo, et al. Early and middle Paleoproterozoic oxidation events and carbon cycle disturbances[J]. Advances in Earth Science,2023, 38(8): 838-851.
33 赵显烨,王伟,关成国,等.古元古代早中期大氧化事件及碳循环扰动[J].地球科学进展,2023, 38(8): 838-851.
34 ZHANG Xingliang. Marine inert dissolved organic carbon pool and marine intrusion black shale[J]. Chinese Science Bulletin, 2022, 67(15): 1 607-1 613.
34 张兴亮. 海洋惰性溶解有机碳库与海侵黑色页岩[J]. 科学通报, 2022, 67(15): 1 607-1 613.
35 XIE Shucheng, JIAO Nianzhi, WANG Pinxian. Strengthening the research on the geological evolution of marine carbon pumps[J]. Chinese Science Bulletin, 2022, 67(15): 1 597-1 599.
35 谢树成, 焦念志, 汪品先. 加强海洋生物碳泵地质演化的研究[J]. 科学通报, 2022, 67(15): 1 597-1 599.
36 LI Sanzhong, LIU Lijun, SUO Yanhui, et al. Carbon tectonics:a new paradigm of Earth system science[J]. Chinese Science Bulletin, 2023, 68(4): 309-338.
36 李三忠, 刘丽军, 索艳慧, 等. 碳构造:一个地球系统科学新范式[J]. 科学通报, 2023, 68(4): 309-338.
37 CHEN C M. Science mapping: a systematic review of the literature[J]. Journal of Data and Information Science, 2017, 2: 1-40.
38 LI Y F, ZHANG T W, ELLIS G S, et al. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 252-264.
39 GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 31-40.
40 ZOU Caineng, ZHU Rukai, CHEN Zhongqiang, et al. Organic-matter-rich shales of China[J]. Earth-Science Reviews, 2019, 189: 51-78.
41 YANG R, HE S, HU Q H, et al. Pore characterization and methane sorption capacity of over-mature organic-rich Wufeng and Longmaxi shales in the southeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 2016, 77: 247-261.
42 DAI J X, ZOU C N, LIAO S M, et al. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin[J]. Organic Geochemistry, 2014, 74: 3-12.
43 JIN C S, LI C, ALGEO T J, et al. A highly redox-heterogeneous ocean in South China during the early Cambrian (~529-514 Ma): implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters, 2016, 441: 38-51.
44 LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1 071-1 098.
45 TIAN H, PAN L, XIAO X M, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Marine and Petroleum Geology, 2013, 48: 8-19.
46 ZHAO J H, JIN Z K, JIN Z J, et al. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: implications for pore evolution[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 21-38.
47 MA Y Q, FAN M J, LU Y C, et al. Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China: implications for depositional controls on organic matter accumulation[J]. Marine and Petroleum Geology, 2016, 75: 291-309.
48 FENG L J, LI C, HUANG J, et al. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529-521 Ma) Yangtze platform, South China[J]. Precambrian Research, 2014, 246: 123-133.
49 ZHOU L, ALGEO T J, SHEN J, et al. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 420: 223-234.
50 JIANG S Y, CHEN Y Q, LING H F, et al. Trace- and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China[J]. Mineralium Deposita, 2006, 41(5): 453-467.
51 PA?AVA J, K?íBEK B, VYMAZALOVá A, et al. Multiple sources of metals of mineralization in lower Cambrian black shales of South China: evidence from geochemical and petrographic study[J]. Resource Geology, 2008, 58(1): 25-42.
52 OCH L M, SHIELDS-ZHOU G A, POULTON S W, et al. Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China[J]. Precambrian Research, 2013, 225: 166-189.
53 YAN D, WANG H, FU Q L, et al. Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China: implications for organic matter accumulation[J]. Marine and Petroleum Geology, 2015, 65: 290-301.
54 POULTON S W, FRALICK P W, CANFIELD D E. Spatial variability in oceanic redox structure 1.8?billion years ago[J]. Nature Geoscience, 2010, 3(7): 486-490.
55 WANG S F, ZOU C N, DONG D Z, et al. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: geochemical and organic carbon isotopic evidence[J]. Marine and Petroleum Geology, 2015, 66: 660-672.
56 CANFIELD D E, POULTON S W, KNOLL A H, et al. Ferruginous conditions dominated later neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5 891): 949-952.
57 TAN J Q, HORSFIELD B, MAHLSTEDT N, et al. Physical properties of petroleum formed during maturation of Lower Cambrian shale in the Upper Yangtze Platform, South China, as inferred from Phase Kinetics modelling[J]. Marine and Petroleum Geology, 2013, 48: 47-56.
58 XU L G, LEHMANN B, MAO J W, et al. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: multi-proxy constraints on the paleoenvironment[J]. Chemical Geology, 2012, 318: 45-59.
59 WANG J G, CHEN D Z, YAN D T, et al. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation[J]. Chemical Geology, 2012, 306/307: 129-138.
60 TIAN H, PAN L, ZHANG T W, et al. Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province, Southwestern China[J]. Marine and Petroleum Geology, 2015, 62: 28-43.
61 CHEN D Z, ZHOU X Q, FU Y, et al. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China[J]. Terra Nova, 2015, 27(1): 62-68.
62 XU Lingang, LEHMANN B, MAO Jingwen, et al. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China—a reassessment[J]. Economic Geology, 2011, 106(3): 511-522.
63 MAO J, LEHMANN B, DU A, et al. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in lower Cambrian black shales of South China and its geologic significance[J]. Economic Geology, 2002, 97(5): 1 051-1 061.
64 YANG J H, JIANG S Y, LING H F, et al. Paleoceangraphic significance of redox-sensitive metals of black shales in the basal Lower Cambrian Niutitang Formation in Guizhou Province, South China[J]. Progress in Natural Science, 2004, 14(2): 152-157.
65 CHEN Yue, CHEN Chaomei, HU Zhigang. Principles and applications of analyzing a citation space[M]. Beijing: Science Press, 2014.
65 陈悦, 陈超美, 胡志刚. 引文空间分析原理与应用:CiteSpace实用指南[M]. 北京: 科学出版社, 2014.
66 LI Jie, CHEN Chaomei. Citespace science and technology text mining and visualization[M]. 3rd edition. Beijing: Beijing Capital University of Economics and Business Press, 2022.
66 李杰, 陈超美. Citespace科技文本挖掘及可视化[M]. 第3版. 北京:北京首都经济贸易大学出版社, 2022.
67 CHEN Q, ZHANG J C, TANG X, et al. Pore structure characterization of the Lower Permian marine-continental transitional black shale in the southern North China Basin, central China[J]. Energy & Fuels, 2016, 30(12): 10 092-10 105.
68 TANG S, ZHANG J C, ELSWORTH D, et al. Lithofacies and pore characterization of the Lower Permian Shanxi and Taiyuan shales in the southern North China Basin[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 644-661.
69 ZHANG Y, LIAO Z W, WU Z G, et al. Climate change controls on extreme organic matter enrichment in Late Permian marine-terrestrial transitional shales in Guizhou, South China[J]. Journal of Petroleum Science and Engineering, 2022, 218. DOI:10.1016/j.petrol.2022.111062 .
70 WANG E Z, GUO T L, LI M W, et al. Depositional environment variation and organic matter accumulation mechanism of marine-continental transitional shale in the upper Permian Longtan formation, Sichuan Basin, SW China[J]. ACS Earth and Space Chemistry, 2022, 6(9): 2 199-2 214.
71 LIU X X, JIANG Z X, ZHANG K, et al. Mechanism analysis of organic matter enrichment of Middle Ordovician-lower Silurian shale in the Upper Yangtze area: taking Jiaoye-1 well in the Jiaoshiba block as an example[J]. Geofluids, 2019, 2019: 1-13.
72 WEI C, DONG T, HE Z L, et al. Major, trace-elemental and sedimentological characterization of the Middle Ordovician Wufeng-lower Silurian Longmaxi formations, Sichuan Basin, South China: insights into the effect of relative sea-level fluctuations on organic matter accumulation in shales[J]. Marine and Petroleum Geology, 2021, 126. DOI:10.1016/j.marpetgeo.2021.104905 .
73 QIU Z, LIU B, LU B, et al. Mineralogical and petrographic characteristics of the Ordovician-Silurian Wufeng-Longmaxi Shale in the Sichuan Basin and implications for depositional conditions and diagenesis of black shales[J]. Marine and Petroleum Geology, 2022, 135. DOI:10.1016/j.marpetgeo.2021.105428 .
74 WANG N, LI M J, TIAN X W, et al. Climate-ocean control on the depositional watermass conditions and organic matter enrichment in lower Cambrian black shale in the Upper Yangtze Platform[J]. Marine and Petroleum Geology, 2020, 120. DOI:10.1016/j.marpetgeo.2020.104570 .
75 YEASMIN R, CHEN D Z, FU Y, et al. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-Upper Yangtze Block, NE Guizhou, South China[J]. Journal of Asian Earth Sciences, 2017, 134: 365-386.
76 STEINER M, WALLIS E, ERDTMANN B D, et al. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils—insights into a Lower Cambrian facies and bio-evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(3/4): 165-191.
77 JIANG S Y, YANG J H, LING H F, et al. Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China[J]. Progress in Natural Science, 2003, 13(10): 788-794.
78 SAWAKI Y, OHNO T, TAHATA M, et al. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo formation in the Three Gorges area, South China[J]. Precambrian Research, 2010, 176(1/2/3/4): 46-64.
79 WANG C, WANG Q X, CHEN G J, et al. Influence of volcanism on the development of black shales in the Chang 7 Member of Yanchang Formation in the Ordos Basin[J]. International Journal of Earth Sciences, 2021, 110(6): 1 939-1 960.
80 CHEN L, LIN W B, CHEN P, et al. Porosity prediction from well logs using back propagation neural network optimized by genetic algorithm in one heterogeneous oil reservoirs of Ordos Basin, China[J]. Journal of Earth Science, 2021, 32(4): 828-838.
81 ZHANG K, LIU R, LIU Z J. Sedimentary sequence evolution and organic matter accumulation characteristics of the Chang 8-Chang 7 members in the Upper Triassic Yanchang Formation, southwest Ordos Basin, central China[J]. Journal of Petroleum Science and Engineering, 2021, 196. DOI:10.1016/j.petrol.2020.107751 .
82 ZHANG L, CHANG S, KHAN M Z, et al. Influence of palaeo-redox and diagenetic conditions on the spatial distribution of Cambrian biotas: a case study from the upper Shuijingtuo Formation (Cambrian Series 2, Stage 3), Three Gorges area of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 548. DOI:10.1016/j.palaeo.2020.109696 .
83 TAN J Q, HORSFIELD B, FINK R, et al. Shale gas potential of the major marine shale formations in the Upper Yangtze platform, South China, part III: mineralogical, lithofacial, petrophysical, and rock mechanical properties[J]. Energy & Fuels, 2014, 28(4): 2 322-2 342.
84 TAN J Q, WENIGER P, KROOSS B, et al. Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, South China, part II: methane sorption capacity[J]. Fuel, 2014, 129: 204-218.
85 GAO Z Y, XIONG S L. Methane adsorption capacity reduction process of water-bearing shale samples and its influencing factors: one example of Silurian Longmaxi Formation shale from the southern Sichuan Basin in China[J]. Journal of Earth Science, 2021, 32(4): 946-959.
Outlines

/