Effect of Surface-Active Substances on the Generation and Physicochemical Properties of Sea Spray Aerosol

  • Minglan XU ,
  • Lin DU ,
  • Maofa GE
Expand
  • 1.Environment Research Institute, Shandong University, Qingdao 266237, China
    2.State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
XU Minglan, Ph.D student, research area includes interfacial reaction of marine aerosols. E-mail: xuminglan@mail.sdu.edu.cn
DU Lin, Professor, research areas include secondary organic aerosol and marine aerosols. E-mail: lindu@sdu.edu.cn

Received date: 2023-08-10

  Revised date: 2023-11-07

  Online published: 2023-11-24

Supported by

the National Natural Science Foundation of China(22076099)

Abstract

Ocean aerosols are of important because of their climatic and environmental effects. When bubbles in seawater rise to the surface and burst, they enrich the surface-active substances present in the sea-surface microlayer into Sea Spray Aerosol (SSA), thus affecting their physical and chemical properties. In this study, the sources and quantitative characterization methods for marine surface-active substances are reviewed. The effects of surface-active substances on the concentration and particle size distribution of SSA are addressed, and the influencing mechanisms of hygroscopicity, cloud condensation nucleation activity, and ice nucleation activity are summarized. Owing to different sources, types, and other environmental conditions; the effects of surface-active substances on SSA generation and physicochemical properties vary significantly, making it difficult to study the environmental and climatic effects of SSA. In the future, further observational and modeling research on surface-active substances is required to provide scientific support for improved regional and global modeling of SSA.

Cite this article

Minglan XU , Lin DU , Maofa GE . Effect of Surface-Active Substances on the Generation and Physicochemical Properties of Sea Spray Aerosol[J]. Advances in Earth Science, 2023 , 38(12) : 1203 -1212 . DOI: 10.11867/j.issn.1001-8166.2023.080

References

1 QUINN P K, COLLINS D B, GRASSIAN V H, et al. Chemistry and related properties of freshly emitted sea spray aerosol[J]. Chemical Reviews, 2015, 115(10): 4 383-4 399.
2 CLARKE A D, OWENS S R, ZHOU J C. An ultrafine sea-salt flux from breaking waves: implications for cloud condensation nuclei in the remote marine atmosphere[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D6). DOI:10.1029/2005JD006565 .
3 de LEEUW G, ANDREAS E L, ANGUELOVA M D, et al. Production flux of sea spray aerosol[J]. Reviews of Geophysics, 2011, 49(2). DOI:10.1029/2010RG000349 .
4 ERLICK C, RUSSELL L M, RAMASWAMY V. A microphysics-based investigation of the radiative effects of aerosol-cloud interactions for two MAST experiment case studies[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D1): 1 249-1 269.
5 BLANCHARD D C. Sea-to-air transport of surface active material[J]. Science, 1964, 146(3 642): 396-397.
6 LHUISSIER H, VILLERMAUX E. Bursting bubble aerosols[J]. Journal of Fluid Mechanics, 2012, 696: 5-44.
7 BLANCO-RODRíGUEZ F J, GORDILLO J M. On the sea spray aerosol originated from bubble bursting jets[J]. Journal of Fluid Mechanics, 2020, 886. DOI:10.1017/jfm.2019.1061 .
8 COCHRAN R E, LASKINA O, TRUEBLOOD J V, et al. Molecular diversity of sea spray aerosol particles: impact of ocean biology on particle composition and hygroscopicity[J]. Chem, 2017, 2(5): 655-667.
9 RASTELLI E, CORINALDESI C, DELL’ANNO A, et al. Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach[J]. Scientific Reports, 2017, 7(1): 1-10.
10 PENDERGRAFT M A, BELDA-FERRE P, PETRAS D, et al. Bacterial and chemical evidence of coastal water pollution from the Tijuana River in sea spray aerosol[J]. Environmental Science & Technology, 2023, 57(10): 4 071-4 081.
11 COCHRAN R E, RYDER O S, GRASSIAN V H, et al. Sea spray aerosol: the chemical link between the oceans, atmosphere, and climate[J]. Accounts of Chemical Research, 2017, 50(3): 599-604.
12 EASTOE J, DALTON J S. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface[J]. Advances in Colloid and Interface Science, 2000, 85(2/3): 103-144.
13 MODINI R L, RUSSELL L M, DEANE G B, et al. Effect of soluble surfactant on bubble persistence and bubble-produced aerosol particles[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(3): 1 388-1 400.
14 PETERSON R E, TYLER B J. Analysis of organic and inorganic species on the surface of atmospheric aerosol using Time-Of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)[J]. Atmospheric Environment, 2002, 36(39/40): 6 041-6 049.
15 NGUYEN Q T, KJ?R K H, KLING K I, et al. Impact of fatty acid coating on the CCN activity of sea salt particles[J]. Tellus B: Chemical and Physical Meteorology, 2017, 69(1). DOI: 10.1080/16000889.2017.1304064 .
16 ALLER J Y, RADWAY J C, KILTHAU W P, et al. Size-resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol[J]. Atmospheric Environment, 2017, 154: 331-347.
17 DONALDSON D J, GEORGE C. Sea-surface chemistry and its impact on the marine boundary layer[J]. Environmental Science & Technology, 2012, 46(19): 10 385-10 389.
18 WATNE ? K, WESTERLUND J, HALLQUIST ? M, et al. Ozone and OH-induced oxidation of monoterpenes: changes in the thermal properties of Secondary Organic Aerosol (SOA)[J]. Journal of Aerosol Science, 2017, 114: 31-41.
19 ENDERS A A, ELLIOTT S M, ALLEN H C. Carbon on the ocean surface: temporal and geographical investigation[J]. ACS Earth and Space Chemistry, 2023, 7(2): 360-369.
20 SALTER M E, UPSTILL-GODDARD R C, NIGHTINGALE P D, et al. Impact of an artificial surfactant release on air-sea gas fluxes during deep ocean gas exchange experiment II[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11). DOI:10.1029/2011JC007023 .
21 PEREIRA R, ASHTON I, SABBAGHZADEH B, et al. Reduced air-sea CO2 exchange in the Atlantic Ocean due to biological surfactants[J]. Nature Geoscience, 2018, 11(7): 492-496.
22 LATIF M T, BRIMBLECOMBE P. Surfactants in atmospheric aerosols[J]. Environmental Science & Technology, 2004, 38(24): 6 501-6 506.
23 CINCINELLI A, STORTINI A M, PERUGINI M, et al. Organic pollutants in sea-surface microlayer and aerosol in the coastal environment of Leghorn—Tyrrhenian Sea[J]. Marine Chemistry, 2001, 76(1/2): 77-98.
24 FRANKLIN E B, AMIRI S, CROCKER D, et al. Anthropogenic and biogenic contributions to the organic composition of coastal submicron sea spray aerosol[J]. Environmental Science & Technology, 2022, 56(23): 16 633-16 642.
25 KALUARACHCHI C P, LEE H D, LAN Y L, et al. Surface tension measurements of aqueous liquid-air interfaces probed with microscopic indentation[J]. Langmuir, 2021, 37(7): 2 457-2 465.
26 FROSSARD A A, GéRARD V, DUPLESSIS P, et al. Properties of seawater surfactants associated with primary marine aerosol particles produced by bursting bubbles at a model air-sea interface[J]. Environmental Science & Technology, 2019, 53(16): 9 407-9 417.
27 WURL O, MILLER L, R?TTGERS R, et al. The distribution and fate of surface-active substances in the sea-surface microlayer and water column[J]. Marine Chemistry, 2009, 115(1/2): 1-9.
28 BARTHELME? T, ENGEL A. How biogenic polymers control surfactant dynamics in the surface microlayer: insights from a coastal Baltic Sea study[J]. Biogeosciences, 2022, 19(20): 4 965-4 992.
29 SHAHAROM S, LATIF M T, KHAN M F, et al. Surfactants in the sea surface microlayer, subsurface water and fine marine aerosols in different background coastal areas[J]. Environmental Science and Pollution Research, 2018, 25(27): 27 074-27 089.
30 HUANG Y J, BRIMBLECOMBE P, LEE C L, et al. Surfactants in the sea-surface microlayer and sub-surface water at estuarine locations: their concentration, distribution, enrichment, and relation to physicochemical characteristics[J]. Marine Pollution Bulletin, 2015, 97(1/2): 78-84.
31 COCHRAN R E, LASKINA O, JAYARATHNE T, et al. Analysis of organic anionic surfactants in fine and coarse fractions of freshly emitted sea spray aerosol[J]. Environmental Science & Technology, 2016, 50(5): 2 477-2 486.
32 BURDETTE T C, FROSSARD A A. Characterization of seawater and aerosol particle surfactants using solid phase extraction and mass spectrometry[J]. Journal of Environmental Sciences, 2021, 108: 164-174.
33 LI Zhong, CHEN Liqi, YAN Jinpei. Review on application of aerosol mass spectrometric technique in characterizing submicron particles in marine aerosols[J]. Advances in Earth Science, 2015, 30(2): 226-236.
33 李忠, 陈立奇, 颜金培. 气溶胶质谱技术在海洋气溶胶亚微米级颗粒物特征的研究进展[J]. 地球科学进展, 2015, 30(2): 226-236.
34 BURDETTE T C, BRAMBLETT R L, ZIMMERMANN K, et al. Influence of air mass source regions on signatures of surface-active organic molecules in size resolved atmospheric aerosol particles[J]. ACS Earth and Space Chemistry, 2023, 7(8): 1 578-1 591.
35 FACCHINI M C, RINALDI M, DECESARI S, et al. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates[J]. Geophysical Research Letters, 2008, 35(17). DOI: 10.1029/2008GL034210 .
36 LONG M S, KEENE W C, KIEBER D J, et al. Light-enhanced primary marine aerosol production from biologically productive seawater[J]. Geophysical Research Letters, 2014, 41(7): 2 661-2 670.
37 QUINN P K, BATES T S, SCHULZ K S, et al. Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol[J]. Nature Geoscience, 2014, 7(3): 228-232.
38 HU Jie, LI Jianlong, LI Kun, et al. Laboratory simulation of sea spray aerosol[J]. Environmental Chemistry, 2023, 42(3): 963-975.
38 胡杰, 李建龙, 李坤, 等. 海洋飞沫气溶胶的实验模拟[J]. 环境化学, 2023, 42(3): 963-975.
39 TYREE C A, HELLION V M, ALEXANDROVA O A, et al. Foam droplets generated from natural and artificial seawaters[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D12). DOI:10.1029/2006JD007729 .
40 FROSSARD A A, LONG M S, KEENE W C, et al. Marine aerosol production via detrainment of bubble plumes generated in natural seawater with a forced-air venturi[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(20): 10 931-10 950.
41 ZáBORI J, MATISāNS M, KREJCI R, et al. Artificial primary marine aerosol production: a laboratory study with varying water temperature, salinity, and succinic acid concentration[J]. Atmospheric Chemistry and Physics, 2012, 12(22): 10 709-10 724.
42 GARRETT W D. The influence of monomolecular surface films on the production of condensation nuclei from bubbled sea water[J]. Journal of Geophysical Research, 1968, 73(16): 5 145-5 150.
43 KING S M, BUTCHER A C, ROSENOERN T, et al. Investigating primary marine aerosol properties: CCN activity of sea salt and mixed inorganic-organic particles[J]. Environmental Science & Technology, 2012, 46(19): 10 405-10 412.
44 LIU L R, DU L, XU L, et al. Molecular size of surfactants affects their degree of enrichment in the sea spray aerosol formation[J]. Environmental Research, 2022, 206. DOI:10.1016/j.envres.2021.112555 .
45 SELLEGRI K, O’DOWD C D, YOON Y J, et al. Surfactants and submicron sea spray generation[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D22). DOI:10.1029/2005JD006658 .
46 FUENTES E, COE H, GREEN D, et al. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol-part 1: source fluxes[J]. Atmospheric Chemistry and Physics, 2010, 10(19): 9 295-9 317.
47 ALPERT P A, KILTHAU W P, BOTHE D W, et al. The influence of marine microbial activities on aerosol production: a laboratory mesocosm study[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(17): 8 841-8 860.
48 ZHOU J C, SWIETLICKI E, BERG O H, et al. Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D23): 32 111-32 123.
49 MOCHIDA M, NISHITA-HARA C, FURUTANI H, et al. Hygroscopicity and cloud condensation nucleus activity of marine aerosol particles over the western North Pacific[J]. Journal of Geophysical Research, 2011, 116(D6). DOI:10.1029/2010JD014759 .
50 SCHILL S R, COLLINS D B, LEE C, et al. The impact of aerosol particle mixing state on the hygroscopicity of sea spray aerosol[J]. ACS Central Science, 2015, 1(3): 132-141.
51 CHEN Y Y, LEE W M G. Hygroscopic properties of inorganic-salt aerosol with surface-active organic compounds[J]. Chemosphere, 1999, 38(10): 2 431-2 448.
52 PETTERS M D, KREIDENWEIS S M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity-part 3: including surfactant partitioning[J]. Atmospheric Chemistry and Physics, 2013, 13(2): 1 081-1 091.
53 ESTILLORE A D, MORRIS H S, OR V W, et al. Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex carbohydrates, and authentic sea spray aerosol particles[J]. Physical Chemistry Chemical Physics, 2017, 19(31): 21 101-21 111.
54 BRAMBLETT R L, FROSSARD A A. Constraining the effect of surfactants on the hygroscopic growth of model sea spray aerosol particles[J]. The Journal of Physical Chemistry A, 2022, 126(46): 8 695-8 710.
55 LIU H C, PEI X Y, ZHANG F, et al. Relative humidity dependence of growth factor and real refractive index for sea salt/malonic acid internally mixed aerosols[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(6). DOI:10.1029/2022JD037579 .
56 CRUZ C N, PANDIS S N. Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosol[J]. Environmental Science & Technology, 2000, 34(20): 4 313-4 319.
57 FORESTIERI S D, STAUDT S M, KUBORN T M, et al. Establishing the impact of model surfactants on cloud condensation nuclei activity of sea spray aerosol mimics[J]. Atmospheric Chemistry and Physics, 2018, 18(15): 10 985-11 005.
58 SWANSON B E, FROSSARD A A. Influence of selected cationic, anionic, and nonionic surfactants on hygroscopic growth of individual aqueous coarse mode aerosol particles[J]. Aerosol Science and Technology, 2023, 57(1): 63-76.
59 FARMER D K, CAPPA C D, KREIDENWEIS S M. Atmospheric processes and their controlling influence on cloud condensation nuclei activity[J]. Chemical Reviews, 2015, 115(10): 4 199-4 217.
60 K?HLER H. The nucleus in and the growth of hygroscopic droplets[J]. Transactions of the Faraday Society, 1936, 32(0): 1 152-1 161.
61 SORJAMAA R, SVENNINGSSON B, RAATIKAINEN T, et al. The role of surfactants in K?hler theory reconsidered[J]. Atmospheric Chemistry and Physics, 2004, 4(8): 2 107-2 117.
62 LIN J J, KRISTENSEN T B, CALDERóN S M, et al. Effects of surface tension time-evolution for CCN activation of a complex organic surfactant[J]. Environmental Science: Processes & Impacts, 2020, 22(2): 271-284.
63 RUEHL C R, CHUANG P Y, NENES A, et al. Strong evidence of surface tension reduction in microscopic aqueous droplets[J]. Geophysical Research Letters, 2012, 39(23). DOI: 10.1029/2012GL053706 .
64 MOORE M J K, FURUTANI H, ROBERTS G C, et al. Effect of organic compounds on Cloud Condensation Nuclei (CCN) activity of sea spray aerosol produced by bubble bursting[J]. Atmospheric Environment, 2011, 45(39): 7 462-7 469.
65 TARANIUK I, GRABER E R, KOSTINSKI A, et al. Surfactant properties of atmospheric and model Humic-Like Substances (HULIS)[J]. Geophysical Research Letters, 2007, 34(16). DOI:10.1029/2007GL029576 .
66 VANHANEN J, HYV?RINEN A P, ANTTILA T, et al. Ternary solution of sodium chloride, succinic acid and water: surface tension and its influence on cloud droplet activation[J]. Atmospheric Chemistry and Physics, 2008, 8(16): 4 595-4 604.
67 PRISLE N L, RAATIKAINEN T, LAAKSONEN A, et al. Surfactants in cloud droplet activation: mixed organic-inorganic particles[J]. Atmospheric Chemistry and Physics, 2010, 10(12): 5 663-5 683.
68 ABBATT J P D, BROEKHUIZEN K, PRADEEP K P. Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles[J]. Atmospheric Environment, 2005, 39(26): 4 767-4 778.
69 HARTERY S, MACINNIS J, CHANG R Y W. Effect of sodium dodecyl benzene sulfonate on the production of cloud condensation nuclei from breaking waves[J]. ACS Earth and Space Chemistry, 2022, 6(12): 2 944-2 954.
70 SCHWIER A N, SAREEN N, LATHEM T L, et al. Ozone oxidation of oleic acid surface films decreases aerosol cloud condensation nuclei activity[J]. Journal of Geophysical Research, 2011, 116(D16). DOI:10.1029/2010JD015520 .
71 CHRISTIANSEN S, ICKES L, BULATOVIC I, et al. Influence of Arctic microlayers and algal cultures on sea spray hygroscopicity and the possible implications for mixed-phase clouds[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(19). DOI:10.1029/2020JD032808 .
72 CORNWELL G C, MCCLUSKEY C S, LEVIN E J T, et al. Direct online mass spectrometry measurements of ice nucleating particles at a California coastal site[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(22): 12 157-12 172.
73 WILSON T W, LADINO L A, ALPERT P A, et al. A marine biogenic source of atmospheric ice-nucleating particles[J]. Nature, 2015, 525(7 568): 234-238.
74 MCCLUSKEY C S, HILL T C J, SULTANA C M, et al. A mesocosm double feature: insights into the chemical makeup of marine ice nucleating particles[J]. Journal of the Atmospheric Sciences, 2018, 75(7): 2 405-2 423.
75 MCCLUSKEY C S, HILL T C J, MALFATTI F, et al. A dynamic link between ice nucleating particles released in nascent sea spray aerosol and oceanic biological activity during two mesocosm experiments[J]. Journal of the Atmospheric Sciences, 2017, 74(1): 151-166.
76 DEMOTT P J, MASON R H, MCCLUSKEY C S, et al. Ice nucleation by particles containing long-chain fatty acids of relevance to freezing by sea spray aerosols[J]. Environmental Science: Processes & Impacts, 2018, 20(11): 1 559-1 569.
77 KNOPF D A, FORRESTER S M. Freezing of water and aqueous NaCl droplets coated by organic monolayers as a function of surfactant properties and water activity[J]. The Journal of Physical Chemistry A, 2011, 115(22): 5 579-5 591.
78 QIU Y Q, ODENDAHL N, HUDAIT A, et al. Ice nucleation efficiency of hydroxylated organic surfaces is controlled by their structural fluctuations and mismatch to ice[J]. Journal of the American Chemical Society, 2017, 139(8): 3 052-3 064.
79 BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541.
80 SCHWIDETZKY R, SUN Y L, FR?HLICH-NOWOISKY J, et al. Ice nucleation activity of perfluorinated organic acids[J]. The Journal of Physical Chemistry Letters, 2021, 12(13): 3 431-3 435.
Outlines

/