Introduction and Review of the International Terrestrial Reference Frame ITRF2020

  • Feng MING ,
  • Yuanxi YANG ,
  • Anmin ZENG ,
  • Wenhao LI
Expand
  • 1.State Key Laboratory of Geo-Information Engineering, Xi’an 710054, China
    2.Room 3, Xi’an Research Institute of Surveying and Mapping, Xi’an 710054, China
    3.School of Surveying and Mapping Science and Technology, Nanjing University of Technology, Nanjing 211800, China
MING Feng, Assistant professor. Research area includes dynamic geodetic data processing research. E-mail: fengmingchyjs@outlook.com

Received date: 2023-06-25

  Revised date: 2023-08-05

  Online published: 2023-11-24

Supported by

the National Natural Science Foundation of China(42388102┣41931076);Grant 42074006┫

Abstract

The International Earth Rotation and Reference Systems Service (IERS) released the updated International Terrestrial Reference Frame ITRF2020 in April 2022 (the International Terrestrial Reference Frame 2020). The accuracy of ITRF2020 is better than that of ITRF2014 because of the adoption of a longer time series, better processing models, and more optimized processing strategies. Compared with ITRF2014, ITRF2020 has significant improvements in the strategies for implementation of origin and scale parameters, and for the first time it explicitly provides the origin, scale, and orientation of seasonal signals; that is, the strategy of segmented alignment is adopted to improve the origin and scale parameter realization; the origin, scale, and orientation realizations of seasonal signals in the Center of Mass (CM) and Center of Figure (CF) frames, as well as the harmonic parameter models in the CM and CF frames, are given. In addition, there have been significant technological advances in data processing for each of the independent techniques involved in the construction of ITRF2020. In this paper, we first introduce in detail the progress of data processing within the four space geodetic technologies and the technical progress of the inter-technology combinations, then briefly analyze the ITRF2020 implementation, and finally provide a preliminary analysis and discussion of its shortcomings.

Cite this article

Feng MING , Yuanxi YANG , Anmin ZENG , Wenhao LI . Introduction and Review of the International Terrestrial Reference Frame ITRF2020[J]. Advances in Earth Science, 2023 , 38(11) : 1186 -1199 . DOI: 10.11867/j.issn.1001-8166.2023.075

References

1 BOCK Y, MELGAR D. Physical applications of GPS geodesy: a review[J]. Reports on Progress in Physics, 2016, 79(10). DOI:10.1088/0034-4885/79/10/106801 .
2 CHENG Pengfei, WEN Hanjiang, LIU Huanling, et al. Research situation and future development of satellite geodesy[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 48-54.
2 程鹏飞, 文汉江, 刘焕玲, 等. 卫星大地测量学的研究现状及发展趋势[J]. 武汉大学学报(信息科学版), 2019, 44(1): 48-54.
3 YAO Yibin, YANG Yuanxi, SUN Heping, et al. Geodesy discipline: progress and perspective[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1 243-1 251.
3 姚宜斌, 杨元喜, 孙和平, 等. 大地测量学科发展现状与趋势[J]. 测绘学报, 2020, 49(10): 1 243-1 251.
4 LARSON K M. GPS seismology[J]. Journal of Geodesy, 2009, 83(3): 227-233.
5 SHAN Xinjian, YIN Hao, LIU Xiaodong, et al. High-rate real-time GNSS seimology and early warning of earthquakes[J].Chinese Journal of Geophysics, 2019, 62(8): 3 043-3 052.
5 单新建, 尹昊, 刘晓东, 等.高频GNSS实时地震学与地震预警研究现状[J].地球物理学报, 2019, 62(8): 3 043-3 052.
6 ZHANG Qin, BAI Zhengwei, HUANG Guanwen, et al. Review of GNSS landslide monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 1 985-2 000.
6 张勤, 白正伟, 黄观文, 等. GNSS滑坡监测预警技术进展[J]. 测绘学报, 2022, 51(10): 1 985-2 000.
7 WANG Guoquan, BAO Yan. GNSS landslide monitoring aligned to regional reference frames[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2 107-2 116.
7 王国权, 鲍艳. 基于区域参考框架的GNSS滑坡监测[J]. 测绘学报, 2022, 51(10): 2 107-2 116.
8 DZURISIN D. Volcano geodesy: challenges and opportunities for the 21st century[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2000, 358(1 770): 1 547-1 566.
9 LARSON K M, CERVELLI P, LISOWSKI M, et al. Volcano monitoring using the global positioning system: filtering strategies[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B9): 19 453-19 464.
10 WHITE A M, GARDNER W P, BORSA A A, et al. A review of GNSS/GPS in hydrogeodesy: hydrologic loading applications and their implications for water resource research[J]. Water Resources Research, 2022, 58(7). DOI:10.1029/2022WR032078 .
11 ZHANG Kefei, LI Haobo, WANG Xiaoming, et al. Recent progresses and future prospectives of ground-based GNSS water vapor sounding[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1 172-1 191.
11 张克非, 李浩博, 王晓明, 等. 地基GNSS大气水汽探测遥感研究进展和展望[J]. 测绘学报, 2022, 51(7): 1 172-1 191.
12 YAO Yibin, ZHAO Qingzhi. Research progress and prospect of monitoring tropospheric water vapor by GNSS technique[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 935-952.
12 姚宜斌, 赵庆志. GNSS对流层水汽监测研究进展与展望[J]. 测绘学报, 2022, 51(6): 935-952.
13 YAO Yibin, GAO Xin. Research progress and prospect of monitoring ionosphere by GNSS technique[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1 728-1 739.
13 姚宜斌, 高鑫. GNSS电离层监测研究进展与展望[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1 728-1 739.
14 BLEWITT G, ALTAMIMI Z, DAVIS J, et al. Geodetic observations and global reference frame contributions to understanding sea-level rise and variability[M]// Church J A, WOODWORTH P L, AARUP T, et al. Stanley wilson understanding sea-level rise and variability. 2010. DOI:10.1002/9781444323276.ch9 .
15 XU Tianhe, MU Dapeng, YAN Haoming, et al. The causes of contemporary sea level rise over recent two decades: progress and challenge[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1 294-1 305.
15 徐天河, 穆大鹏, 闫昊明, 等. 近20年海平面变化成因研究进展及挑战[J]. 测绘学报, 2022, 51(7): 1 294-1 305.
16 PLAG H P, Pearlman M. Global geodetic observing system[M]. Berlin, Germany: Springer, 2009.
17 JIANG Weiping, LI Zhao, WEI Na, et al. Progress and thoughts on establishment of geodetic coordinate frame[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1 259-1 270.
17 姜卫平, 李昭, 魏娜, 等. 大地测量坐标框架建立的进展与思考[J]. 测绘学报, 2022, 51(7): 1 259-1 270.
18 SUN Fuping, JIA Yanfeng, ZHU Xinhui, et al. Advances in dynamic maintenance technology of mm-level terrestrial reference frame[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1 688-1 700.
18 孙付平, 贾彦锋, 朱新慧, 等. 毫米级地球参考框架动态维持技术研究进展[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1 688-1 700.
19 U. N. United Nations General Assembly. Sixty-Ninth Session, Agenda Item 9, Report of the Economic and Social Council, A/69 /L.53[EB/OL].2015,Geneva.(2023-02-01)[2023-11-08]. , 2023-2-1.
20 ALTAMIMI Z, SILLARD P, BOUCHER C. ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10). DOI:10.1029/2001JB000561 .
21 ALTAMIMI Z, COLLILIEUX X, LEGRAND J, et al. ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B9). DOI:10.1029/2007JB004949 .
22 ALTAMIMI Z, COLLILIEUX X, MéTIVIER L. ITRF2008: an improved solution of the international terrestrial reference frame[J]. Journal of Geodesy, 2011, 85(8): 457-473.
23 ALTAMIMI Z, REBISCHUNG P, MéTIVIER L, et al. ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(8): 6 109-6 131.
24 ALTAMIMI Z, REBISCHUNG P, COLLILIEUX X, et al. ITRF2020: an augmented reference frame refining the modeling of nonlinear station motions[J]. Journal of Geodesy, 2023, 97(5). DOI:10.1007/s00190-023-01738-w .
25 MING Feng, ZENG Anmin. Evaluatioii and analysis of the international terrestrial reference frame 2014[J]. Geomatic Science and Engineering, 2019(1): 12-21.
25 明锋, 曾安敏. 国际地球参考框架ITRF2014评析[J]. 测绘科学与工程, 2019(1): 12-21.
26 ALTAMIMI Z, PAUL Rebischung, XAVIER Collilieux, et al. ITRF2020: an overview of its features and results[EB/OL]. (2023-02-01)[2023-11-08]. , 2023-2-1.
27 LUCERI V, PIRRI M, RODRíGUEZ J, et al. Systematic errors in SLR data and their impact on the ILRS products[J]. Journal of Geodesy, 2019, 93(11): 2 357-2 366.
28 APPLEBY G, RODRíGUEZ J, ALTAMIMI Z. Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993-2014[J]. Journal of Geodesy, 2016, 90(12): 1 371-1 388.
29 RODRíGUEZ J, APPLEBY G, OTSUBO T. Upgraded modelling for the determination of centre of mass corrections of geodetic SLR satellites: impact on key parameters of the terrestrial reference frame[J]. Journal of Geodesy, 2019, 93(12): 2 553-2 568.
30 EXERTIER P, BELLI A, LEMOINE J M. Time biases in laser ranging observations: a concerning issue of Space Geodesy[J]. Advances in Space Research, 2017, 60(5): 948-968.
31 ILRS. ILRS_Data_Handling_File.snx[EB/OL]. (2023-02-01)[2023-11-08]..
32 DAVIES P, BLEWITT G. Methodology for global geodetic time series estimation: a new tool for geodynamics[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B5): 11 083-11 100.
33 PAVLIS E, LUCERI V. The ILRS contribution to ITRF2020[EB/OL]. (2023-02-01)[2023-11-08]. , 2023-2-1.
34 PAVLIS E, LUCERI V, BASONI A, et al. ITRF2020: the ILRS Contribution and Operational Implementation[EB/OL]. (2023-02-01)[2023-11-08]. , 2023-2-1., 2023.
35 HELLMERS H, MODIRI S, BACHMANN S, et al. Combined IVS contribution to the ITRF2020[M]// International association of geodesy symposia. Cham: Springer International Publishing, 2022: 3-13.
36 IVS. IVS-AC_ITRF2020[EB/OL]. (2023-2-1)[2023-11-08]..
37 BEHREND D, THOMAS C, GIPSON J, et al. On the organization of CONT17[J]. Journal of Geodesy, 2020, 94(10): 1-13.
38 RIES J C, DESAI S. Update to the conventional model for rotational deformation[C]// AGU Fall Meeting Abstracts. 2017: G14 A-07.
39 DESAI S D, SIBOIS A E. Evaluating predicted diurnal and semidiurnal tidal variations in polar motion with GPS-based observations[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(7): 5 237-5 256.
40 GIRDIUK A, SCHINDELEGGER M, KRáSNá H, et al. Assessing recent high-frequency earth rotation models with very long baseline interferometry[C]. Alicante, Spain: Journées 2017 des Systèmes de Référence et de la Rotation Terrestre, 2017.
41 ITRF. IVS_contribution-to-ITRF2020[EB/OL].(2023-02-01)[2023-11-08]. .
42 PAUL Rebischung. IGS contribution to ITRF2020[EB/OL]. (2023-02-01)[2023-11-08]., 2023-2-1.
43 REBISCHUNG P, ALTAMIMI Z, RAY J, et al. The IGS contribution to ITRF2014[J]. Journal of Geodesy, 2016, 90(7): 611-630.
44 ITRF. IDS-contribution-to-ITRF2020_v1[EB/OL]. (2023-02-01)[2023-11-08]. .
45 MOREAUX G, LEMOINE F G, CAPDEVILLE H, et al. The international DORIS service contribution to ITRF2020[J]. Advances in Space Research, 2023, 72(1): 65-91.
46 DOBSLAW H, BERGMANN-WOLF I, DILL R, et al. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06[J]. Geophysical Journal International, 2017, 211(1): 263-269.
47 ?TěPáNEK P, FILLER V. DORIS Alcatel ground antenna: evaluation of the phase center variation models[J]. Advances in Space Research, 2023, 72(1): 23-36.
48 GLASER S, K?NIG R, NEUMAYER K H, et al. On the impact of local ties on the datum realization of global terrestrial reference frames[J]. Journal of Geodesy, 2019, 93(5): 655-667.
49 ITRF. ITRF2020-Tie-Residuals.dat[EB/OL]. (2023-02-01)[2023-11-08]. .
50 ITRF. ITRF2014-Tie-Residuals.dat[EB/OL]. (2023-02-01)[2023-11-08]. .
51 XU Qifeng. The precision of modern GPS relative positioning[J]. Bulletin of Surveying and Mapping, 2003(5): 6-8.
51 许其凤. 现代GPS相对定位的精度[J]. 测绘通报, 2003(5): 6-8.
52 DONG D, FANG P, BOCK Y, et al. Anatomy of apparent seasonal variations from GPS-derived site position time series[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B4). DOI:10.1029/2001JB000573 .
53 CHEN Q, DAM T V, SNEEUW N, et al. Singular spectrum analysis for modeling seasonal signals from GPS time series[J]. Journal of Geodynamics, 2013, 72: 25-35.
54 ZHOU Jiangcun, SUN Heping. Loading effect on high precision GPS observation[J]. Advance in Earth Science, 2007, 22(10): 1 036-1 040.
54 周江存, 孙和平. 高精度GPS观测中的负荷效应[J]. 地球科学进展, 2007, 22(10): 1 036-1 040.
55 JIA Lulu, XIANG Longwei, WANG Hansheng. Effects of crustal structure for estimation of vertical load deformation on the solid Earth using GRACE in China Mainland[J]. Advances in Earth Science, 2014, 29(7): 828-834.
55 贾路路, 相龙伟, 汪汉胜. 地壳结构对GRACE估算中国大陆地表垂直负荷形变的影响[J]. 地球科学进展, 2014, 29(7): 828-834.
56 GRUSZCZYNSKA M. Investigation of time_changeable seasonal components in the GPS height time series: a case study for Central Europe[J]. Acta Geodynamica et Geomaterialia, 2016: 281-289. DOI:10.13168/AGG.2016.0010 .
Outlines

/