Research Progress on the Stratospheric Quasi-Zero Wind Layer

  • Xiaokang SHI ,
  • Yanbing HU ,
  • Panfeng WANG ,
  • Wenjun ZHANG ,
  • Bo LIU
Expand
  • Beijing Aviation Meteorological Institute, Beijing 100085, China
SHI Xiaokang Senior engineer, research areas include aviation numerical weather prediction. E-mail: xk_shi@126.com

Received date: 2023-04-01

  Revised date: 2023-07-21

  Online published: 2023-09-25

Supported by

the Major Special Proget of High Resolution Earth Observation System(GFZX0402180102);First author: SHI Xiaokang, Senior engineer, research areas include aviation numerical weather prediction. E-mail: xk_shi@126.com

Abstract

At around 20 km height in the atmosphere, a natural phenomenon occurs, in which the lower westerly (easterly) zonal wind changes into the upper easterly (westerly) zonal wind during a specific season, while the meridional wind is very small. This transition layer of the zonal wind is called stratospheric Quasi-Zero Wind Layer (QZWL). The low speed and direction transition of the wind in the QZWL are beneficial for stratospheric airships, high-altitude balloons, and other weakly powered or unpowered near-space vehicles, allowing them to stay there for longer periods. The characteristics of the QZWL with time in the northern hemisphere, the entire China, and key regions in China were summarized based on the QZWL results. The influence mechanisms and characteristics of the thermal wind, stratospheric Quasi-Biennial Oscillation (QBO), Stratospheric Sudden Warming (SSW), eddy flux transport of planetary wave, South Asia high and subtropical westerly jet on the QZWL formation were systematically analyzed. The advantages and disadvantages of MST radar, laser radar, sounding rocket and upper-air balloon in QZWL detection and some relevant facts were compared and analyzed. The advantages and disadvantages of middle atmosphere modeling and numerical weather modeling regarding QZWL forecasting were summarized. Numerical weather modeling is currently the main method for QZWL forecasting and meteorological support, and diagnostic schemes, such as the bottom height and thickness of the QZWL, are the basis for the quantitative study of the refined structure and evolution of the QZWL. The working principle of stratospheric vehicles using the QZWL is summarized. Finally, prospects regarding the key directions of future scientific research are presented. This review of the research progress on the QZWL will provide the basis for the future in-depth study of the QZWL and the deployment and meteorological support of stratospheric vehicles.

Cite this article

Xiaokang SHI , Yanbing HU , Panfeng WANG , Wenjun ZHANG , Bo LIU . Research Progress on the Stratospheric Quasi-Zero Wind Layer[J]. Advances in Earth Science, 2023 , 38(9) : 916 -930 . DOI: 10.11867/j.issn.1001-8166.2023.051

References

1 BELMONT A D, DARTT D G, NASTROM G D. Variations of stratospheric zonal winds, 20-65 km, 1961-1971[J]. Journal of Applied Meteorology, 1975, 14( 4): 585- 594.
2 Daren Lü, SUN Baolai, LI Liqun. Zero wind layer and the first dwell experiment of high-altitude balloon in China[J]. Target and Environment Feature, 2002, 22( 1): 45- 51.
2 吕达仁, 孙宝来, 李立群. 零风层与我国首次高空气球停留试验[J]. 目标与环境特性研究, 2002, 22( 1): 45- 51.
3 CHANG Xiaofei, BAI Yunfei, FU Wenxing, et al. Research on fixed-point aerostat based on its special stratosphere wind field[J]. Journal of Northwestern Polytechnical University, 2014, 32( 1): 12- 17.
3 常晓飞, 白云飞, 符文星, 等. 基于平流层特殊风场的浮空器定点方案研究[J]. 西北工业大学学报, 2014, 32( 1): 12- 17.
4 DENG Xiaolong, YANG Xixiang, MA Zhenyu, et al. Review of key technologies for station-keeping of stratospheric aerostats based on wind field utilization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40( 8): 18- 31.
4 邓小龙, 杨希祥, 麻震宇, 等. 基于风场环境利用的平流层浮空器区域驻留关键问题研究进展[J]. 航空学报, 2019, 40( 8): 18- 31.
5 DENG Xiaolong, LI Kui, YU Chunrui, et al. Station-keeping performance of novel near-space aerostat in quasi-zero wind layer[J]. Journal of National University of Defense Technology, 2019, 41( 1): 5- 12.
5 邓小龙, 李魁, 于春锐, 等. 准零风层新型临近空间浮空器区域驻留性能[J]. 国防科技大学学报, 2019, 41( 1): 5- 12.
6 ZHANG Lixue, WANG Zhongwei. Environmental adaptability evaluation model for stratospheric airships[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34( 4): 719- 726.
6 张礼学, 王中伟. 平流层飞艇环境适应性评价模型[J]. 航空学报, 2013, 34( 4): 719- 726.
7 XIAO Cunying, HU Xiong, GONG Jiancun, et al. Analysis of the characteristics of the stratospheric quasi-zero wind layer over China[J]. Chinese Journal of Space Science, 2008, 28( 3): 230- 235.
7 肖存英, 胡雄, 龚建村, 等. 中国上空平流层准零风层的特征分析[J]. 空间科学学报, 2008, 28( 3): 230- 235.
8 TAO Mengchu. Characteristics of zonal wind in lower stratosphere and diagnosis of a special category of stratospheric sudden warming events[D]. Nanjing: Nanjing University of Information Science and Technology, 2011.
8 陶梦初. 北半球平流层中下层风场特征统计和一类特殊SSW事件的动力学诊断分析[D]. 南京: 南京信息工程大学, 2011.
9 TAO Mengchu, HE Jinhai, LIU Yi. Analysis of the characteristics of the stratospheric quasi-zero wind layer and the effects of the quasi-biennial oscillation on it[J]. Climatic and Environmental Research, 2012, 17( 1): 92- 102.
9 陶梦初, 何金海, 刘毅. 平流层准零风层统计特征及准两年周期振荡对其影响[J]. 气候与环境研究, 2012, 17( 1): 92- 102.
10 HU Yaoyue, WANG Donghai, WU Zhenzhen, et al. Analysis of the observation characteristics of the quasi-zero wind layer in the near space over China[J]. Chinese Journal of Space Science, 2022, 42( 2): 383- 395.
10 胡耀月, 王东海, 吴珍珍, 等. 中国区域临近空间准零风层的观测特征[J]. 空间科学学报, 2022, 42( 2): 383- 395.
11 YANG Tingting. Discussion of the distribution characteristics and influence facts of stratospheric quasi-zero wind layer in the northern hemisphere[D]. Kunming: Yunnan University, 2016.
11 杨婷婷. 北半球平流层准零风层的分布特征及影响因子探讨[D]. 昆明: 云南大学, 2016.
12 CHEN Baiqing. Characteristics of spatial-temporal distribution of the stratospheric quasi-zero wind layer in China[D]. Nanjing: Nanjing University of Information Science and Technology, 2018.
12 陈柏青. 中国上空平流层准零风层时空分布特征分析[D]. 南京: 南京信息工程大学, 2018.
13 CHEN Baiqing, LIU Yi, LIU Liangke, et al. Characteristics of spatial-temporal distribution of the stratospheric quasi-zero wind layer in low-latitude regions[J]. Climatic and Environmental Research, 2018, 23( 6): 657- 669.
13 陈柏青, 刘毅, 刘靓珂, 等. 低纬地区平流层准零风层时空分布特征分析[J]. 气候与环境研究, 2018, 23( 6): 657- 669.
14 LIU Jie, CHEN Jiangyun, WU Sijiang, et al. Research on the variation characteristics of wind field environment on the bottom of stratosphere in Xinjiang region[C]// The 4th China high resolution earth observation conference. Wuhan, 2017.
14 刘杰, 陈江云, 吴思江, 等. 新疆地区平流层底层风场环境变化特征及规律研究[C]// 第四届高分辨率对地观测学术年会. 武汉, 2017.
15 WANG Xiaoting, LI Sen, SHI Xiaokang, et al. Analysis and numerical simulation of characteristics of wind field at low-level stratosphere over Xinjiang region in summer[J]. Meteorological Science and Technology, 2021, 49( 6): 878- 884.
15 王晓婷, 李森, 史小康, 等. 新疆地区夏季平流层低层风场特征分析及数值模拟[J]. 气象科技, 2021, 49( 6): 878- 884.
16 LIU Yi, LU Chunhui. The influence of the 11-year sunspot cycle on the atmospheric circulation during winter[J]. Chinese Journal of Geophysics, 2010, 53( 6): 1 269- 1 277.
16 刘毅, 陆春晖. 冬季太阳11年周期活动对大气环流的影响[J]. 地球物理学报, 2010, 53( 6): 1 269- 1 277.
17 GARFINKEL C I, HARTMANN D L. Effects of the El Ni?o-Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere[J]. Journal of Geophysical Research: Atmospheres, 2007, 112( D19). DOI: 10.1029/2007JD008481 .
18 Daren Lü, CHEN Zeyu, GUO Xia, et al. Research status of atmospheric environment in adjacent space[J]. Advances in Mechanics, 2009, 39( 6): 674- 682.
18 吕达仁, 陈泽宇, 郭霞, 等. 临近空间大气环境研究现状[J]. 力学进展, 2009, 39( 6): 674- 682.
19 ZHOU Xinjia, CHEN Hongbin, BIAN Jianchun. Analysis of the characteristics of zonal wind reverse layer in the lower and middle stratosphere of the Northern Hemisphere and its seasonal variation[J]. Climatic and Environmental Research, 2011, 16( 5): 565- 576.
19 周昕家, 陈洪滨, 卞建春. 北半球平流层中低层纬向风季节转换及转换层特征的分析研究[J]. 气候与环境研究, 2011, 16( 5): 565- 576.
20 ZHANG Yuli. Stratospheric winter-summer seasonal transition and the influence of multi-scale dynamic processes[D]. Beijing: University of Chinese Academy of Sciences, 2015.
20 张玉李. 平流层冬—夏季节转换及多尺度动力过程的影响[D]. 北京: 中国科学院大学, 2015.
21 HOLTON J R, LINDZEN R S. An updated theory for the quasi-biennial cycle of the tropical stratosphere[J]. Journal of the Atmospheric Sciences, 1972, 29( 6): 1 076- 1 080.
22 BALDWIN M P, GRAY L J, DUNKERTON T J, et al. The quasi-biennial oscillation[J]. Reviews of Geophysics, 2001, 39( 2): 179- 229.
23 COY L, NEWMAN P A, MOLOD A, et al. Seasonal prediction of the quasi-biennial oscillation[J]. Journal of Geophysical Research: Atmospheres, 2022, 127( 6). DOI: 10.1029/2021JD036124 .
24 HAYNES P H. The latitudinal structure of the Quasi-Biennial Oscillation[J]. Quarterly Journal of the Royal Meteorological Society, 1998, 124( 552): 2 645- 2 670.
25 LIN Haitao. The discussion of the influence of QBO and SSW over quasi-zero wind layers[D]. Kunming: Yunnan University, 2017.
25 林海涛. QBO及SSW对准零风层分布的影响探究[D]. 昆明: 云南大学, 2017.
26 DENG Shumei, CHEN Yuejuan. The spatial and temporal distribution of the stratospheric sudden warming[J]. Journal of University of Science and Technology of China, 2006, 36( 4): 445- 452.
26 邓淑梅, 陈月娟. 平流层爆发性增温的时空分布特征[J]. 中国科学技术大学学报, 2006, 36( 4): 445- 452.
27 LU Q, RAO J, SHI C H, et al. Possible influence of sudden stratospheric warmings on the atmospheric environment in the Beijing-Tianjin-Hebei region[J]. Atmospheric Chemistry and Physics, 2022, 22( 19): 13 087- 13 102.
28 LI Lin, LI Chongyin, TAN Yanke, et al. Stratospheric sudden warming impacts on the weather/climate in China and its role in the influences of ENSO[J]. Chinese Journal of Geophysics, 2010, 53( 7): 1 529- 1 542.
28 李琳, 李崇银, 谭言科, 等. 平流层爆发性增温对中国天气气候的影响及其在ENSO影响中的作用[J]. 地球物理学报, 2010, 53( 7): 1 529- 1 542.
29 LU Chunhui, DING Yihui. Progress in the study of stratosphere-troposphere interaction[J]. Advances in Meteorological Science and Technology, 2013, 3( 2): 6- 21.
29 陆春晖, 丁一汇. 平流层与对流层相互作用的研究进展[J]. 气象科技进展, 2013, 3( 2): 6- 21.
30 HU Yongyun. On the influence of stratospheric anomalies on tropospheric weather systems[J]. Advances in Earth Science, 2006, 21( 7): 713- 720.
30 胡永云. 关于平流层异常影响对流层天气系统的研究进展[J]. 地球科学进展, 2006, 21( 7): 713- 720.
31 YUAN Y, LIU Y, RAN L K, et al. Height variation in the summer quasi-zero wind layer over Dunhuang, northwest China: a diagnostic study[J]. Journal of Meteorological Research, 2022, 36( 4): 618- 630.
32 YANG R, RAN L K, ZHANG Y L, et al. Analysis and simulation of the stratospheric quasi-zero wind layer over Korla, Xinjiang Province, China[J]. Advances in Atmospheric Sciences, 2019, 36( 10): 1 143- 1 155.
33 GU Yidong, WU Ji, CHEN Hu, et al. Review of the 40-year development of China’s space exploration[J]. Chinese Journal of Space Science, 2021, 41( 1): 10- 21.
33 顾逸东, 吴季, 陈虎, 等. 中国空间探测领域40年发展[J]. 空间科学学报, 2021, 41( 1): 10- 21.
34 SONG Ping. Analysis of atmospheric environment characteristics of China’s near space based on satellite, rocket and balloon exploration data[D]. Changsha: National University of Defense Technology, 2020.
34 宋平. 基于卫星、火箭和气球探测资料的我国临近空间大气环境特征分析[D]. 长沙: 国防科技大学, 2020.
35 TIAN Yufang, CHEN Ze, Daren Lü. A dataset of Beijing MST radar horizontal wind fields at Xianghe station in 2012[J]. China Scientific Data, 2021, 6( 2). DOI: 10.11922/csdata.2020.0078.zh .
35 田玉芳, 陈泽, 吕达仁. 2012年北京MST雷达(香河站)大气水平风场数据集[J]. 中国科学数据, 2021, 6( 2). DOI: 10.11922/csdata.2020.0078.zh .
36 GONG Wanlin, ZHOU Xiaoming, CHEN Gang, et al. Mesosphere-Stratosphere-Troposphere radar dataset during 2012-2020 from Chongyang, Wuhan station[J]. China Scientific Data, 2021, 6( 2). DOI: 10.11922/csdata.2021.0023.zh .
36 龚晚林, 周晓明, 陈罡, 等. 2012—2020年武汉崇阳站MST雷达回波数据集[J]. 中国科学数据, 2021, 6( 2). DOI: 10.11922/csdata.2021.0023.zh .
37 GUO Wenjie, YAN Zhaoai, HU Xiong, et al. Long-term frequency stabilization system in 532 nm wind lidar[J]. Infrared and Laser Engineering, 2016, 45( ): S130004-1-s130004- 5.
37 郭文杰, 闫召爱, 胡雄, 等. 532 nm测风激光雷达长时间稳频系统[J]. 红外与激光工程, 2016, 45( ): S130004-1-s130004- 5.
38 YAN Zhaoai, HU Xiong, GUO Wenjie, et al. Near space doppler lidar techniques and applications (Invited)[J]. Infrared and Laser Engineering, 2021, 50( 3): 20210100-1-20210100- 10.
38 闫召爱, 胡雄, 郭文杰, 等. 临近空间多普勒激光雷达技术及其应用(特邀)[J]. 红外与激光工程, 2021, 50( 3): 20210100-1- 20210100- 10.
39 HU Xiong, WEI Feng, LI Lei, et al. In-situ environmental detecting payloads onboard the floating platform in near-space[J]. Aerospace Technology, 2022( 3): 95- 104.
39 胡雄, 韦峰, 李磊, 等. 浮空平台临近空间环境探测载荷技术研究[J]. 空天技术, 2022( 3): 95- 104.
40 JIANG Guoying, XU Jiyao, SHI Dongbo, et al. Analysis of atmospheric detection results of the first meteorological rocket in meridian project[J]. Chinese Science Bulletin, 2011, 56( 19): 1 568- 1 574.
40 姜国英, 徐寄遥, 史东波, 等. 子午工程首枚气象火箭大气探测结果分析[J]. 科学通报, 2011, 56( 19): 1 568- 1 574.
41 TIAN Y F, Lü D R. Comparison of Beijing MST radar and radiosonde horizontal wind measurements[J]. Advances in Atmospheric Sciences, 2017, 34( 1): 39- 53.
42 HU Dongdong, SHU Zhifeng, SUN Dongsong, et al. Analysis of observation results of quasi-zero wind layer at night by Rayleigh wind lidar[J]. Infrared and Laser Engineering, 2015( 2): 482- 485.
42 胡冬冬, 舒志峰, 孙东松, 等. 瑞利测风激光雷达夜间准零风层观测结果分析[J]. 红外与激光工程, 2015( 2): 482- 485.
43 WANG Yuanzu, HAN Yuli, SUN Dongsong, et al. Multi-season observation and analysis of quasi-zero wind layer by Doppler lidar in mid-latitude areas of China[J]. Infrared and Laser Engineering, 2020, 49( 3): 0305004-1-0305004- 8.
43 王元祖, 韩於利, 孙东松, 等. 我国中纬度地区多普勒激光雷达准零风层多季节观测与分析[J]. 红外与激光工程, 2020, 49( 3): 0305004-1- 0305004- 8.
44 LI Wei, LI Shuyan, WANG Jiankai, et al. Spatial drift analysis of high-altitude meteorological sounding balloon in China area[J]. Acta Meteorologica Sinica, 2010, 68( 3): 421- 427.
44 李伟, 李书严, 王建凯, 等. 中国地区高空气象探测气球空间漂移分析[J]. 气象学报, 2010, 68( 3): 421- 427.
45 TIAN Xiaomin, LIU Dong, XU Jiwei, et al. Overview of atmospheric detection lidar technology[J]. Journal of Atmospheric and Environmental Optics, 2018, 13( 5): 321- 341.
45 田晓敏, 刘东, 徐继伟, 等. 大气探测激光雷达技术综述[J]. 大气与环境光学学报, 2018, 13( 5): 321- 341.
46 GUO Qiyun, YANG Rongkang, QIAN Yuan, et al. Comparative analysis of the whole process of balloon-borne radiosonde ascent and parachute-borne radiosonde descent[J]. Meteorological Monthly, 2018, 44( 8): 1 094- 1 103.
46 郭启云, 杨荣康, 钱媛, 等. 气球携带探空仪上升和降落伞携带探空仪 下降的全程探空对比分析[J]. 气象, 2018, 44( 8): 1 094- 1 103.
47 GENG Dan, ZHAO Zengliang, WAN Li, et al. Analysis of data from near space meteorological rocket sounding in northwest China in winter[J]. Chinese Journal of Space Science, 2022, 42( 3): 396- 402.
47 耿丹, 赵增亮, 万黎, 等. 冬季西北地区临近空间气象火箭探测数据分析[J]. 空间科学学报, 2022, 42( 3): 396- 402.
48 CHEN Huajiao, QIN Guotai, LI Yongping, et al. Comparative analysis of atmospheric density detection data and models of Tiangong-1[J]. Manned Spaceflight, 2013, 19( 6): 34- 38.
48 陈华姣, 秦国泰, 李永平, 等. 天宫一号大气密度探测数据与模式的比较分析[J]. 载人航天, 2013, 19( 6): 34- 38.
49 DROB D P, EMMERT J T, CROWLEY G, et al. An empirical model of the Earth’s horizontal wind fields: HWM07[J]. Journal of Geophysical Research: Space Physics, 2008, 113( A12). DOI: 10.1029/2008JA013541 .
50 FAN Zhiqiang, SHENG Zheng, WAN Li, et al. Comprehensive evaluation of the accuracy of meteorological rocket sounding data in near space[J]. Acta Physica Sinica, 2013( 19): 573- 582.
50 范志强, 盛峥, 万黎, 等. 临近空间气象火箭探测资料精度的综合评估[J]. 物理学报, 2013( 19): 573- 582.
51 LI Kui, DENG Xiaolong, YANG Xixiang, et al. Modeling and prediction of stratospheric wind field based on proper orthogonal decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44( 9): 2 013- 2 020.
51 李魁, 邓小龙, 杨希祥, 等. 基于本征正交分解的平流层风场建模与预测[J]. 北京航空航天大学学报, 2018, 44( 9): 2 013- 2 020.
52 LI Kui, DENG Xiaolong, YANG Xixiang, et al. Trajectory control of aerostat based on prediction of stratospheric wind field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45( 5): 1 008- 1 018.
52 李魁, 邓小龙, 杨希祥, 等. 基于平流层风场预测的浮空器轨迹控制[J]. 北京航空航天大学学报, 2019, 45( 5): 1 008- 1 018.
53 LONG Yuan, DENG Xiaolong, YANG Xixiang, et al. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48( 10): 1 970- 1 978.
53 龙远, 邓小龙, 杨希祥, 等. 基于PSO-BP神经网络的平流层风场短期快速预测[J]. 北京航空航天大学学报, 2022, 48( 10): 1 970- 1 978.
54 CHENG Xuan, XIAO Cunying, HU Xiong. Research progress on the influence of atmospheric environment in near space on aerodynamic characteristics of hypersonic vehicle[J]. Aerodynamic Missile Journal, 2018( 5): 22- 28.
54 程旋, 肖存英, 胡雄. 临近空间大气环境对高超声速飞行器气动特性的影响研究进展[J]. 飞航导弹, 2018( 5): 22- 28.
55 HU Xiong, GONG Jiancun, YANG Junfeng, et al. A study of near-space atmospheric prediction methods[C]// The 3rd China high resolution Earth observation conference. Shanghai, 2014.
55 胡雄, 龚建村, 杨钧烽, 等. 临近空间大气预报方法研究[C]// 第三届高分辨率对地观测学术年会. 上海, 2014.
56 LIU Tao, XIAO Cunying, HU Xiong, et al. Application of time series method in forecasting near-space atmospheric wind[J]. Chinese Journal of Space Science, 2018, 38( 2): 211- 220.
56 刘涛, 肖存英, 胡雄, 等. 时间序列法在临近空间大气风场预报中的应用[J]. 空间科学学报, 2018, 38( 2): 211- 220.
57 XIN Xiaoge, WU Tongwen, ZHANG Jie, et al. Introduction of BCC models and its participation in CMIP6[J]. Climate Change Research, 2019, 15( 5): 378- 382.
57 辛晓歌, 吴统文, 张洁, 等. BCC模式及其开展的CMIP6试验介绍[J]. 气候变化研究进展, 2019, 15( 5): 378- 382.
58 ZHOU Guangqing, ZHANG Yunquan, JIANG Jinrong, et al. Earth system model: CAS-ESM[J]. Frontier of Data & Computing, 2020, 2( 1): 38- 54.
58 周广庆, 张云泉, 姜金荣, 等. 地球系统模式CAS-ESM[J]. 数据与计算发展前沿, 2020, 2( 1): 38- 54.
59 XIAO Cunying, HU Xiong, YANG Junfeng, et al. Near-space Aura/MLS satellite data assimilation technology and its application in numerical forecast[C]// The 4th China high resolution Earth observation conference. Wuhan, 2017.
59 肖存英, 胡雄, 杨钧烽, 等. 临近空间Aura/MLS卫星数据同化技术及其在数值预报中的应用[C]// 第四届高分辨率对地观测学术年会. 武汉, 2017.
60 XIE Fei, TIAN Wenshou, ZHENG Fei, et al. Stratospheric assimilation, weather forecast, and climate prediction model based on data assimilation research testbed and whole atmosphere community climate model[J]. Chinese Journal of Atmospheric Sciences, 2022, 46( 6): 1 300- 1 318.
60 谢飞, 田文寿, 郑飞, 等. 基于DART+WACCM模式搭建的平流层同化、天气预报和气候预测模型研究[J]. 大气科学, 2022, 46( 6): 1 300- 1 318.
61 SHEN Xueshun, WANG Jianjie, LI Zechun, et al. Independent innovation and development of numerical weather forecast in China[J]. Acta Meteorologica Sinica, 2020, 78( 3): 451- 476.
61 沈学顺, 王建捷, 李泽椿, 等. 中国数值天气预报的自主创新发展[J]. 气象学报, 2020, 78( 3): 451- 476.
62 POWERS J G, KLEMP J B, SKAMAROCK W C, et al. The weather research and forecasting model: overview, system efforts, and future directions[J]. Bulletin of the American Meteorological Society, 2017, 98( 8): 1 717- 1 737.
63 UNTCH A, HORTAL M. A finite-element scheme for the vertical discretization of the semi-Lagrangian version of the ECMWF forecast model[J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130( 599): 1 505- 1 530.
64 MAXSON B. Upgrade NCEP Global Forecast System (GFS) to V 15. 1[R/OL]. NCEP Service Change Notice, 2019. [ 2023-01-20]. .
65 FARRAR M. Upgrade NCEP Global Forecast System (GFS) to V16[R/OL]. NCEP Service Change Notice, 2021. [ 2023-01-20]. .
66 SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF model version 4.3[R]. NCAR Technical Notes, 2021.
67 LIU Donghai, HUANG Jing, LIU Juan, et al. Review and prospect of parameterization schemes of typical mesoscale numerical prediction models at home and abroad[J]. Advances in Earth Science, 2023, 38( 4): 349- 362.
67 刘东海, 黄静, 刘娟, 等. 典型中尺度数值预报模式参数化方案的综述与展望[J]. 地球科学进展, 2023, 38( 4): 349- 362.
68 LI Sen, SHI Xiaokang, HUANG Jiangping, et al. Localizaiton test of the regional short-time aviation numerical forecast system based on WRF over Xinjiang area[C]// The 5th Chinese aeronautics science and technology conference. Jiaxing, 2021.
68 李森, 史小康, 黄江平, 等. 基于WRF模式的区域短时预报系统在新疆地区的本地化试验[C]// 第五届中国航空科学技术大会. 嘉兴, 2021.
69 SUN Yihan, CHENG Xinghong, LIU Yanxiang, et al. Impacts of different parameterization combination schemes on wind forecast[J]. Meteorological Science and Technology, 2013, 41( 5): 870- 877.
69 孙逸涵, 程兴宏, 柳艳香, 等. 不同参数化方案对风场预报效果影响个例研究[J]. 气象科技, 2013, 41( 5): 870- 877.
70 ZHONG Yiming, LI Gang, ZHANG Hua. Polar-orbiting satellites upper-atmosphere channel application for the Global/Regional Assimilation and Prediction System[J]. Transactions of Atmospheric Sciences, 2016, 39( 2): 280- 288.
70 钟亦鸣, 李刚, 张华. 极轨卫星高层通道在GRAPES同化系统中的应用[J]. 大气科学学报, 2016, 39( 2): 280- 288.
71 LI Chunlin, LUO Rongyuan, CHEN Tongxi. New idea for stratospheric communications—Google loon[J]. Communications Technology, 2015, 48( 2): 125- 129.
71 李春霖, 罗蓉媛, 陈彤曦. 平流层通信新思路——谷歌气球计划[J]. 通信技术, 2015, 48( 2): 125- 129.
72 CATHEY H M. The NASA super pressure balloon—a path to flight[J]. Advances in Space Research, 2009, 44( 1): 23- 38.
73 ATHAR R U, MATHEWS T E, LAVIGNE J M, et al. Stratospheric C4ISR Unmanned Station (STRATACUS)[C]// AIAA balloon systems conference. Reston: AIAA, 2017.
74 SAITO Y, AKITA D, FUKE H, et al. Properties of tandem balloons connected by extendable suspension wires[J]. Advances in Space Research, 2010, 45( 4): 482- 489.
Outlines

/