Research Progress in the Construction of a Bulk Model for Moisture Cycling

  • Ning WANG ,
  • Hailong GUO ,
  • Xinmin ZENG
Expand
  • 1.College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410003, China
    2.College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
WANG Ning (1988-), male, Kaifeng City, Henan Province, Lecturer. Research area includes hydrometeorology. E-mail: wangning19@nudt.edu.cn
ZENG Xinmin (1967-), male, Leiyang City, Hunan Province, Professor. Research areas include land surface processes and hydrometeorology. E-mail: xinmin.zeng@hhu.edu.cn

Received date: 2023-03-09

  Revised date: 2023-06-18

  Online published: 2023-08-28

Supported by

the National Natural Science Foundation of China “Study on the establishment of three-dimensional bulk model for moisture cycling”(42205069);“Study on dynamic mechanism of energy spectrum in atmospheric hydrostatic adjustment process”(42005051)

Abstract

Moisture cycling strongly affects the development of regional and global weather and climate systems. Bulk models derived from the water vapor balance equation are widely used to study water vapor cycling. The existing bulk modes of moisture cycling were systematically determined, and based on the calculation framework of the model, existing models were divided into Euler and Lagrange types time. The basic assumptions, mathematical derivation process, and characteristics of the representative models in the different developmental stages of the two types of models are summarized. Subsequently, the development trend of the bulk model for moisture cycling, the advantages and disadvantages of frequently used models, and the scope of application are discussed. Finally, the problem of assuming well-mixed moisture and a one-layer atmosphere in the current models as well as the future development of bulk models for moisture cycling are discussed.

Cite this article

Ning WANG , Hailong GUO , Xinmin ZENG . Research Progress in the Construction of a Bulk Model for Moisture Cycling[J]. Advances in Earth Science, 2023 , 38(8) : 852 -865 . DOI: 10.11867/j.issn.1001-8166.2023.045

References

1 CHENG T F, LU M Q, DAI L. Moisture channels and pre-existing weather systems for East Asian rain belts[J]. NPJ Climate and Atmospheric Science, 2021, 4(1): 1-13.
2 DIRMEYER P A, SCHLOSSER C A, BRUBAKER K L. Precipitation, recycling, and land memory: an integrated analysis[J]. Journal of Hydrometeorology, 2009, 10(1): 278-288.
3 JIANG Tong, SUN Hemin, LI Xiucang, et al. Impact of climate change on water cycle[J]. Meteorological Monthly, 2020, 46(3): 289-300.
3 姜彤, 孙赫敏, 李修仓, 等. 气候变化对水文循环的影响[J]. 气象, 2020, 46(3): 289-300.
4 te WIERIK S A, CAMMERAAT E L H, GUPTA J, et al. Reviewing the impact of land use and land-use change on moisture recycling and precipitation patterns[J]. Water Resources Research, 2021, 57(7). DOI:10.1029/2020WR029234 .
5 van NOORDWIJK M, ELLISON D. Rainfall recycling needs to be considered in defining limits to the world’s green water resources[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(17): 8 102-8 103.
6 OKI T, KANAE S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5 790): 1 068-1 072.
7 SUN B, WANG H J. Inter-decadal transition of the leading mode of inter-annual variability of summer rainfall in East China and its associated atmospheric water vapor transport[J]. Climate Dynamics, 2015, 44(9): 2 703-2 722.
8 LU Guihua, HE Hai. View of global hydrological cycle[J]. Advances in Water Science, 2006, 17(3):419-424.
8 陆桂华, 何海. 全球水循环研究进展[J]. 水科学进展, 2006, 17(3):419-424.
9 TANG Qiuhong. Global change hydrology: terrestrial water cycle and global change[J]. Science China: Earth Sciences, 2020, 63: 459-462.
9 汤秋鸿. 全球变化水文学:陆地水循环与全球变化[J]. 中国科学:地球科学, 2020, 50(3): 436-438.
10 JIN Junliang, HE Jian, HE Ruimin, et al. Impacts of climate change to water resources and extreme hydrological event in the Huaihe River Basin[J]. Scientia Geographica Sinica, 2017, 37(8): 1 226-1 233.
10 金君良, 何健, 贺瑞敏, 等. 气候变化对淮河流域水资源及极端洪水事件的影响[J]. 地理科学, 2017, 37(8): 1 226-1 233.
11 JIN Junliang, WANG Guoqing, LIU Cuishan, et al. Future evolution trends of water resources in Haihe River Basin under the climate change[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2016, 37(5):1-6.
11 金君良, 王国庆, 刘翠善, 等. 气候变化下海河流域未来水资源演变趋势[J]. 华北水利水电大学学报(自然科学版), 2016, 37(5):1-6.
12 SUN R C, YUAN H L, LIU X L, et al. Evaluation of the latest satellite-gauge precipitation products and their hydrologic applications over the Huaihe River Basin[J]. Journal of Hydrology, 2016, 536: 302-319.
13 PRANINDITA A, WANG-ERLANDSSON L, FETZER I, et al. Moisture recycling and the potential role of forests as moisture source during European heatwaves[J]. Climate Dynamics, 2022, 58(1): 609-624.
14 TRENBERTH K E. Changes in precipitation with climate change[J]. Climate Research, 2011, 47(1): 123-138.
15 XU X D, SHI X Y, WANG Y Q, et al. Data analysis and numerical simulation of moisture source and transport associated with summer precipitation in the Yangtze River Valley over China[J]. Meteorology and Atmospheric Physics, 2008, 100(1): 217-231.
16 GIMENO L, STOHL A, TRIGO R, et al. Oceanic and terrestrial sources of continental precipitation[J]. Reviews of Geophysics, 2012, 50(4). DOI: 10.1029/2012RG000389 .
17 LI Hu, PAN Xiaoduo. An overview of research methods on water vapor transport and sources in the Tibetan Plateau[J]. Advances in Earth Science, 2022, 37(10): 1 025-1 036.
17 李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022, 37(10): 1 025-1 036.
18 LI Xiucang, JIANG Tong, WU Ping. Progress and prospect of the moisture recycling models[J]. Advances in Earth Science, 2020, 35(10): 1 029-1 040.
18 李修仓, 姜彤, 吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1 029-1 040.
19 STOHL A, FORSTER C, FRANK A, et al. Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2[J]. Atmospheric Chemistry and Physics, 2005, 5(9): 2 461-2 474.
20 DRAXLER R, HESS G. An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition[J]. Australian Meteorological Magazine, 1998, 47(4): 295-308.
21 DIRMEYER P A, BRUBAKER K L. Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D16): 19 383-19 397.
22 DIRMEYER P A, BRUBAKER K L. Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor[J]. Journal of Hydrometeorology, 2007, 8(1): 20-37.
23 ZHANG Hongwen, XU Yu, GAO Yanhong. Simulation study on precipitation recycling ratio in the Tibetan Plateau from 1982 to 2005[J]. Advances in Earth Science, 2020, 35(3): 297-307.
23 张宏文, 续昱, 高艳红. 1982—2005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
24 WEI J F, DIRMEYER P A, BOSILOVICH M G, et al. Water vapor sources for Yangtze River Valley rainfall: climatology, variability, and implications for rainfall forecasting[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D5). DOI: 10.1029/2011JD016902 .
25 JOUSSAUME S, SADOURNY R, VIGNAL C. Origin of precipitating water in a numerical simulation of the July climate[J]. Ocean-Air Interact, 1986, 1: 43-56.
26 KOSTER R, JOUZEL J, SUOZZO R, et al. Global sources of local precipitation as determined by the NASA/GISS GCM[J]. Geophysical Research Letters, 1986, 13(2): 121-124.
27 BOSILOVICH M G, SUD Y C, SCHUBERT S D, et al. Numerical simulation of the large-scale North American monsoon water sources[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D16). DOI: 10.1029/2002JD003095 .
28 NUMAGUTI A. Origin and recycling processes of precipitating water over the Eurasian continent: experiments using an atmospheric general circulation model[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D2): 1 957-1 972.
29 WERNER M, HEIMANN M, HOFFMANN G. Isotopic composition and origin of polar precipitation in present and glacial climate simulations[J]. Tellus B, 2001, 53(1): 53-71.
30 SODEMANN H, WERNLI H, SCHWIERZ C. Sources of water vapour contributing to the Elbe flood in August 2002—a tagging study in a mesoscale model[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135(638): 205-223.
31 WEI J H, KNOCHE H R, KUNSTMANN H. Contribution of transpiration and evaporation to precipitation: an ET-Tagging study for the Poyang Lake region in Southeast China[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(14): 6 845-6 864.
32 KNOCHE H R, KUNSTMANN H. Tracking atmospheric water pathways by direct evaporation tagging: a case study for West Africa[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(22): 12 345-12 358.
33 DOMINGUEZ F, MIGUEZ-MACHO G, HU H C. WRF with water vapor tracers: a study of moisture sources for the North American monsoon[J]. Journal of Hydrometeorology, 2016, 17(7): 1 915-1 927.
34 GAO Y H, CHEN F, MIGUEZ-MACHO G, et al. Understanding precipitation recycling over the Tibetan Plateau using tracer analysis with WRF[J]. Climate Dynamics, 2020, 55(9/10): 2 921-2 937.
35 ZHANG H W, GAO Y H, XU J W, et al. Decomposition of future moisture flux changes over the Tibetan Plateau projected by global and regional climate models[J]. Journal of Climate, 2019, 32(20): 7 037-7 053.
36 NAVALE A, KARTHIKEYAN L. Understanding recycled precipitation at different spatio-temporal scales over India: an eulerian water tagging approach[J]. Water Resources Research, 2023, 59(1). DOI: 10.1029/2022WR032605 .
37 DOMINGUEZ F, HU H, MARTINEZ J A. Two-layer dynamic recycling model (2L-DRM): learning from moisture tracking models of different complexity[J]. Journal of Hydrometeorology, 2020, 21(1): 3-16.
38 van der ENT R J, TUINENBURG O A, KNOCHE H R, et al. Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?[J]. Hydrology and Earth System Sciences, 2013, 17(12): 4 869-4 884.
39 BUDYKO M I. Climate and life[M]. New York: Academic Press, 1974.
40 BURDE G I, ZANGVIL A. The estimation of regional precipitation recycling. part I: review of recycling models[J]. Journal of Climate, 2001, 14(12): 2 497-2 508.
41 BRUBAKER K L, ENTEKHABI D, EAGLESON P S. Estimation of continental precipitation recycling[J]. Journal of Climate, 1993, 6(6): 1 077-1 089.
42 BURDE G I, ZANGVIL A. The estimation of regional precipitation recycling. part II: a new recycling model[J]. Journal of Climate, 2001, 14(12): 2 509-2 527.
43 DOMINGUEZ F, KUMAR P, LIANG X Z, et al. Impact of atmospheric moisture storage on precipitation recycling[J]. Journal of Climate, 2006, 19: 1 513-1 530.
44 ELTAHIR E A B, BRAS R L. Precipitation recycling in the Amazon Basin[J]. Quarterly Journal of the Royal Meteorological Society, 1994, 120(518): 861-880.
45 van der ENT R J, SAVENIJE H H G, SCHAEFLI B, et al. Origin and fate of atmospheric moisture over continents[J]. Water Resources Research, 2010, 46(9). DOI:10.1029/2010WR009127 .
46 YI Lan, TAO Shiyan. Construction and analysis of a precipitation recycling model[J]. Advances in Water Science, 1997, 8(3): 205-211.
46 伊兰, 陶诗言. 一个降水再循环模型的建立及分析[J]. 水科学进展, 1997, 8(3): 205-211.
47 DOMINGUEZ F, KUMAR P. Precipitation recycling variability and ecoclimatological stability-a study using NARR data. part I: central U.S. Plains ecoregion[J]. Journal of Climate, 2008, 21(20): 5 165-5 176, 5 178.
48 DROZDOV O A, GRIGOR’EVA A S. The hydrologic cycle in the atmosphere[M]. Russia: Israel Program for Scientific Translations, 1965.
49 SCH?R C, LüTHI D, BEYERLE U, et al. The soil-precipitation feedback: a process study with a regional climate model[J]. Journal of Climate, 1999, 12(3): 722-741.
50 GUO Y P, WANG C H. Trends in precipitation recycling over the Qinghai-Xizang Plateau in last decades[J]. Journal of Hydrology, 2014, 517: 826-835.
51 LI R L, WANG C H, WU D. Changes in precipitation recycling over arid regions in the Northern Hemisphere[J]. Theoretical and Applied Climatology, 2018, 131(1): 489-502.
52 YAO Junqiang, YANG Qing, WU Likun, et al. Quantifying recycled moisture fraction in precipitation of Tianshan Mountains[J]. Desert and Oasis Meteorology, 2016, 10(5):37-43.
52 姚俊强, 杨青, 伍立坤, 等. 天山地区水汽再循环量化研究[J]. 沙漠与绿洲气象, 2016, 10(5): 37-43.
53 BURDE G I, ZANGVIL A, LAMB P J. Estimating the role of local evaporation in precipitation for a two-dimensional region[J]. Journal of Climate, 1996, 9(6): 1 328-1 338.
54 KANG Hongwen, GU Xiangqian, FU Xiang, et al. Precipitation recycling over the Northern China[J]. Journal of Applied Meteorological Science, 2005, 16(2): 139-147.
54 康红文, 谷湘潜, 付翔, 等. 我国北方地区降水再循环率的初步评估[J]. 应用气象学报, 2005, 16(2): 139-147.
55 KANG Hongwen, GU Xiangqian, ZHU Congwen, et al. Precipitation recycling in southern and central China[J]. Chinese Journal of Atmospheric Sciences, 2004, 28(6): 892-900.
55 康红文, 谷湘潜, 祝从文, 等. 我国中部和南部地区降水再循环率评估[J]. 大气科学, 2004, 28(6): 892-900.
56 KURITA N, NUMAGUTI A, SUGIMOTO A, et al. Relationship between the variation of isotopic ratios and the source of summer precipitation in eastern Siberia[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D11). DOI:10.1029/2001JD001359 .
57 FU Xiang, XU Xiangde, KANG Hongwen. Research on precipitation recycling during Meiyu season over middle-lower reaches of Changjiang River in 1998[J]. Meteorological Science and Technology, 2006, 34(4): 394-399.
57 付翔, 徐祥德, 康红文. 长江中下游1998年夏季梅雨期降水再循环研究[J]. 气象科技, 2006, 34(4): 394-399.
58 ZHANG J X, WANG S S, HE Y L, et al. Contribution of the precipitation-recycling process to the wetting trend in Xinjiang, China[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(11). DOI:10.1029/2021JD036407 .
59 MARTINEZ J A, DOMINGUEZ F. Sources of atmospheric moisture for the La plata River basin[J]. Journal of Climate, 2014, 27(17): 6 737-6 753.
60 van der ENT R J, SAVENIJE H H G. Length and time scales of atmospheric moisture recycling[J]. Atmospheric Chemistry and Physics, 2011, 11(5): 1 853-1 863.
61 WANG N, ZENG X M, ZHENG Y Q, et al. The atmospheric moisture residence time and reference time for moisture tracking over China[J]. Journal of Hydrometeorology, 2018, 19(7): 1 131-1 147.
62 GOESSLING H F, REICK C H. On the “well-mixed” assumption and numerical 2-D tracing of atmospheric moisture[J]. Atmospheric Chemistry and Physics, 2013, 13(11): 5 567-5 585.
63 BOSILOVICH M G. On the vertical distribution of local and remote sources of water for precipitation[J]. Meteorology and Atmospheric Physics, 2002, 80(1): 31-41.
64 BURDE G I. Bulk recycling models with incomplete vertical mixing. part I: conceptual framework and models[J]. Journal of Climate, 2006, 19(8): 1 461-1 472.
65 LETTAU H, LETTAU K, MOLION L C B. Amazonia’s hydrologic cycle and the role of atmospheric recycling in assessing deforestation effects[J]. Monthly Weather Review, 1979, 107(3): 227-238.
66 BURDE G I, GANDUSH C, BAYARJARGAL Y. Bulk recycling models with incomplete vertical mixing. part II: precipitation recycling in the Amazon Basin[J]. Journal of Climate, 2006, 19(8): 1 473-1 489.
67 ZHAO Y, ZHOU T J. Interannual variability of precipitation recycle ratio over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(2). DOI:10.1029/2020JD033733 .
68 GUO L, KLINGAMAN N P, DEMORY M E, et al. The contributions of local and remote atmospheric moisture fluxes to East Asian precipitation and its variability[J]. Climate Dynamics, 2018, 51(11): 4 139-4 156.
69 WU P, DING Y H, LIU Y J, et al. The characteristics of moisture recycling and its impact on regional precipitation against the background of climate warming over Northwest China[J]. International Journal of Climatology, 2019, 39(14): 5 241-5 255.
70 LI X C, WU P, DING Y H, et al. Spatial-temporal variation of precipitation recycling over the Tibetan Plateau under climate warming[J]. Atmospheric Research, 2022, 280. DOI:10.1016/.atmosres.2022.106431 .
77 HAI H E, GUIHUA L U. Precipitation recycling in Tarim River Basin[J]. Journal of Hydrologic Engineering, 2013, 18(11): 1 549-1 556.
72 LIU Y B, ZHANG C, TANG Q H, et al. Moisture source variations for summer rainfall in different intensity classes over Huaihe River Valley, China[J]. Climate Dynamics, 2021, 57(3/4): 1 121-1 133.
73 ZHANG C, LI Q. Tracking the moisture sources of an extreme precipitation event in Shandong, China in July 2007: a computational analysis[J]. Journal of Meteorological Research, 2014, 28(4): 634-644.
74 ZHANG C, TANG Q H, CHEN D L, et al. Tracing changes in atmospheric moisture supply to the drying Southwest China[J]. Atmospheric Chemistry and Physics, 2017, 17(17): 10 383-10 393.
75 ZHANG C, TANG Q H, CHEN D L, et al. Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau[J]. Journal of Hydrometeorology, 2019, 20(2): 217-229.
76 ZHAO T, ZHAO J S, HU H C, et al. Source of atmospheric moisture and precipitation over China’s major river basins[J]. Frontiers of Earth Science, 2016, 10(1): 159-170.
77 LI Ying, SU Fengge, TANG Qiuhong, et al. Contributions of moisture sources to precipitation in the major drainage basins in the Tibetan Plateau[J]. Science China Earth Sciences, 2022, 65(6): 1 088-1 103.
77 李颖, 苏凤阁, 汤秋鸿, 等. 青藏高原主要流域的降水水汽来源[J]. 中国科学:地球科学, 2022, 52(7): 1 328-1 344.
78 HE Y L, TIAN W L, HUANG J P, et al. The mechanism of increasing summer water vapor over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(10). DOI:10.1029/2020JD034166 .
79 HUA L J, ZHONG L H, KE Z J. Characteristics of the precipitation recycling ratio and its relationship with regional precipitation in China[J]. Theoretical and Applied Climatology, 2017, 127(3): 513-531.
80 HUA L J, ZHONG L H, KE Z J. Precipitation recycling and soil-precipitation interaction across the arid and semi-arid regions of China[J]. International Journal of Climatology, 2016, 36(11): 3 708-3 722.
81 HUA L J, ZHONG L H, MA Z G. Decadal transition of moisture sources and transport in northwestern China during summer from 1982 to 2010[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(23): 12 522-12 540.
82 LI R L, WANG C H. Precipitation recycling using a new evapotranspiration estimator for Asian-African arid regions[J]. Theoretical and Applied Climatology, 2020, 140(1): 1-13.
83 REN Y, YU H P, LIU C X, et al. Attribution of dry and wet climatic changes over central Asia[J]. Journal of Climate, 2022, 35(5): 1 399-1 421.
84 WANG N, ZENG X M, GUO W D, et al. Quantitative diagnosis of moisture sources and transport pathways for summer precipitation over the mid-Lower Yangtze River Basin[J]. Journal of Hydrology, 2018, 559: 252-265.
85 WANG C H, LI J M, ZHANG F M, et al. Changes in the moisture contribution over global arid regions[J]. Climate Dynamics, 2023, 61(1): 543-557.
86 ZHANG C. Moisture sources for precipitation in Southwest China in summer and the changes during the extreme droughts of 2006 and 2011[J]. Journal of Hydrology, 2020, 591. DOI: 10.1016/j.jhydrol.2020.125333 .
87 CHEN J H, LI Y, XIONG B, et al. Comparison of moisture sources of summer precipitation in 1998 and 2020 in the middle and lower reaches of Yangtze River Basin[J]. International Journal of Climatology, 2023, 43(8): 3 493-3 505.
88 LI Y, WANG C H, PENG H, et al. Contribution of moisture sources to precipitation changes in the Three Gorges Reservoir Region[J]. Hydrology and Earth System Sciences, 2021, 25(9): 4 759-4 772.
89 TUINENBURG O A, STAAL A. Tracking the global flows of atmospheric moisture and associated uncertainties[J]. Hydrology and Earth System Sciences, 2020, 24(5): 2 419-2 435.
Outlines

/