Research Advances on Ebullitive CH4 Emissions from Inland Waters

  • Xueqi NIU ,
  • Weiwei SHI ,
  • Wenxin WU ,
  • Shuwei LIU ,
  • Ping YANG ,
  • Siliang LI ,
  • Zhifeng YAN
Expand
  • 1.Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
    2.Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
    3.School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
    4.Critical Zone Observatory of Bohai Coastal Region, Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin 300072, China
NIU Xueqi (1999-), female, Taiyuan City, Shanxi Province, Master student. Research area includes methane ebullitive emissions from waters. E-mail: nxq_0720@tju.edu.cn
YAN Zhifeng (1986-), male, Xiushui City, Jiangxi Province, Professor. Research areas include carbon-nitrogen processes and global change. E-mail: yanzf17@tju.edu.cn

Received date: 2023-04-13

  Revised date: 2023-07-19

  Online published: 2023-08-28

Supported by

the National Key Research and Development Program of the Ministry of Science and Technology of China “Coupled mechanisms of carbon and nitrogen in estuary wetlands”(2022YFF1301002);The National Natural Science Foundation of China “Mechanism of methane uptake response to moisture change and its mechanistic model”(42077009)

Abstract

Inland water is an important source of global methane (CH4) emissions, and CH4 emitted through ebullition accounts for a large proportion of the total CH4 emissions from inland waters. Here, the latest progress in domestic and international research has been systematically summarized to introduce the generation, transport, oxidation, and release of CH4 via ebullition in inland waters as well as the methods and techniques for measuring CH4 ebullition. Subsequently, temporal and spatial variations in CH4 ebullition from global inland water were compared at different temporal and spatial scales. In addition, the mechanisms of the relevant influencing factors in the processes of CH4 generation and ebullition are further summarized, and current development and applications of CH4 ebullition models are discussed. Finally, potential research directions and challenges related to CH4 ebullition from inland water are proposed, aiming to provide a basis for subsequent research on CH4 ebullition, investigation of process and control mechanisms, and model development and estimation in this field.

Cite this article

Xueqi NIU , Weiwei SHI , Wenxin WU , Shuwei LIU , Ping YANG , Siliang LI , Zhifeng YAN . Research Advances on Ebullitive CH4 Emissions from Inland Waters[J]. Advances in Earth Science, 2023 , 38(8) : 802 -814 . DOI: 10.11867/j.issn.1001-8166.2023.043

References

1 IPCC. Global warming of 1.5 ℃: IPCC special report on impacts of global warming of 1.5 ℃ above pre-industrial levels in contextof strengthening response to climate change, sustainable development, and efforts to eradicate poverty[M]. Cambridge: Cambridge University Press, 2022.
2 SAUNOIS M, STAVERT A R, POULTER B, et al. The global methane budget 2000-2017[J]. Earth System Science Data, 2020, 12(3): 1 561-1 623.
3 FORSTER P, STORELVMO T, ARMOUR K, et al. The Earth’s energy budget, climate feedbacks, and climate sensitivity[M]. Cambridge: Cambridge University Press, 2021.
4 IEA. Global methane tracker[M/OL]. 2022. [2023-03-13]. .
5 RAYMOND P A, HARTMANN J, LAUERWALD R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013,503(7 476): 355-359.
6 ZHENG Y J, WU S, XIAO S Q, et al. Global methane and nitrous oxide emissions from inland waters and estuaries[J]. Global Change Biology, 2022, 28(15): 4 713-4 725.
7 ROSENTRETER J A, BORGES A V, DEEMER B R, et al. Half of global methane emissions come from highly variable aquatic ecosystem sources[J]. Nature Geoscience, 2021, 14(4): 225-230.
8 BASTVIKEN D, COLE J, PACE M, et al. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate[J]. Global Biogeochemical Cycles, 2004, 18(4). DOI: 10.1029/2004GB002238 .
9 BAULCH H M, DILLON P J, MARANGER R, et al. Diffusive and ebullitive transport of methane and nitrous oxide from streams: are bubble-mediated fluxes important?[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G4). DOI:10.1029/2011JG001656 .
10 STANLEY E H, CASSON N J, CHRISTEL S T, et al. The ecology of methane in streams and rivers: patterns, controls, and global significance[J]. Ecological Monographs, 2016, 86(2): 146-171.
11 YANG P, ZHANG Y F, YANG H, et al. Ebullition was a major pathway of methane emissions from the aquaculture ponds in southeast China[J]. Water Research, 2020, 184. DOI:10.1016/j.watres.2020.116176 .
12 FANG X T, WANG C, ZHANG T R, et al. Ebullitive CH4 flux and its mitigation potential by aeration in freshwater aquaculture: measurements and global data synthesis[J]. Agriculture, Ecosystems & Environment, 2022, 335. DOI:10.1016/j.agee.2022.108016 .
13 CASPER P, MABERLY S C, HALL G H, et al. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere[J]. Biogeochemistry, 2000, 49: 1-19.
14 HUTTUNEN J T, ALM J, LIIKANEN A, et al. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions[J]. Chemosphere, 2003, 52(3): 609-621.
15 WIK M, VARNER R K, ANTHONY K W, et al. Climate-sensitive northern lakes and ponds are critical components of methane release[J]. Nature Geoscience, 2016, 9(2): 99-105.
16 HERRERO O S, ROMERO GONZáLEZ-QUIJANO C, CASPER P, et al. Methane emissions from contrasting urban freshwaters: rates, drivers, and a whole-city footprint[J]. Global Change Biology, 2019, 25(12): 4 234-4 243.
17 ZHANG L W, XIA X H, LIU S D, et al. Significant methane ebullition from alpine permafrost rivers on the East Qinghai-Tibet Plateau[J]. Nature Geoscience, 2020, 13(5): 349-354.
18 WANG G Q, XIA X H, LIU S D, et al. Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions[J]. Water Research, 2021, 189. DOI: 10.1016/j.watres.2020.116654 .
19 CRAWFORD J T, STANLEY E H, SPAWN S A, et al. Ebullitive methane emissions from oxygenated wetland streams[J]. Global Change Biology, 2014, 20(11): 3 408-3 422.
20 HOLGERSON M A, RAYMOND P A. Large contribution to inland water CO2 and CH4 emissions from very small ponds[J]. Nature Geoscience, 2016, 9(3): 222-226.
21 CONRAD R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal[J]. Organic Geochemistry, 2005, 36(5): 739-752.
22 ZHU Donglin. Study on the generation, release and driving mechanism of methane in Taihu and Xuanwu Lake[D]. Nanjing: Nanjing University, 2012.
22 祝栋林. 太湖及玄武湖甲烷气体产生、释放及影响机制研究[D]. 南京: 南京大学, 2012.
23 BRIDGHAM S D, CADILLO-QUIROZ H, KELLER J K, et al. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales[J]. Global Change Biology, 2013, 19(5): 1 325-1 346.
24 WU Wenxin. Characteristics and influencing factors of greenhouse gases emissions from the Zhongtianshe River Basin in the Tianmu Lake area[D]. Nanjing: Nanjing Normal University, 2020.
24 吴文欣. 天目湖地区中田舍河流域水体温室气体排放特征及影响因素[D]. 南京: 南京师范大学, 2020.
25 BOSSE U, FRENZEL P, CONRAD R. Inhibition of methane oxidation by ammonium in the surface layer of a littoral sediment[J]. Federation of European Microbiological Societies Microbiology Ecology, 1993, 13(2): 123-134.
26 THAUER R K. Functionalization of methane in anaerobic microorganisms[J]. Angewandte Chemie International Edition, 2010, 49(38): 6 712-6 713.
27 BASTVIKEN D, COLE J J, PACE M L, et al. Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G2). DOI:10.1029/2007JG000608 .
28 MAECK A, HOFMANN H, LORKE A. Pumping methane out of aquatic sediments-Ebullition forcing mechanisms in an impounded river[J]. Biogeosciences, 2014, 11(11): 2 925-2 938.
29 DELSONTRO T, MCGINNIS D F, SOBEK S, et al. Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments[J]. Environmental Science & Technology, 2010, 44(7): 2 419-2 425.
30 OSTROVSKY I, T?GOWSKI J. Hydroacoustic analysis of spatial and temporal variability of bottom sediment characteristics in Lake Kinneret in relation to water level fluctuation[J]. Geo-Marine Letters, 2010, 30(3): 261-269.
31 JOYCE J, JEWELL P W. Physical controls on methane ebullition from reservoirs and lakes[J]. Environmental & Engineering Geoscience, 2003, 9(2): 167-178.
32 ZHANG Cheng. On the process and mechamism of methane emission from eutrophic ponds [D]. Wuhan: China University of Geosciences, 2018.
32 张成. 富营养化池塘甲烷排放过程与机制研究[D]. 武汉: 中国地质大学, 2018.
33 YANG Ping, TONG Chuan. Emission paths and measurement methods for greenhouse gas fluxes from freshwater ecosystems:a review[J]. Acta Ecologica Sinica, 2015, 35(20): 6 868-6 880.
33 杨平, 仝川. 淡水水生生态系统温室气体排放的主要途径及影响因素研究进展[J]. 生态学报, 2015, 35(20): 6 868-6 880.
34 WU S, LI S Q, ZOU Z H, et al. High methane emissions largely attributed to ebullitive fluxes from a subtropical river draining a rice paddy watershed in China[J]. Environmental Science & Technology, 2019, 53(7): 3 499-3 507.
35 WIK M, CRILL P M, VARNER R K, et al. Multiyear measurements of ebullitive methane flux from three subarctic lakes[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(3): 1 307-1 321.
36 KELLER M, STALLARD R F. Methane emission by bubbling from Gatun Lake, Panama[J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D4): 8 307-8 319.
37 WANG Jiao. Analysis of methane emission characteristics and its influencing factors over aquaculture ponds[D]. Nanjing: Nanjing University of Information Science & Technology, 2020.
37 王娇. 养殖塘CH4排放特征及其影响因子的分析[D]. 南京: 南京信息工程大学, 2020.
38 CHEN S, WANG D Q, DING Y, et al. Ebullition controls on CH4 emissions in an urban, eutrophic river: a potential time-scale bias in determining the aquatic CH4 flux[J]. Environmental Science & Technology, 2021, 55(11): 7 287-7 298.
39 DANDO P R, HOVLAND M. Environmental effects of submarine seeping natural gas[J]. Continental Shelf Research, 1992, 12(10): 1 197-1 207.
40 DELSONTRO T, KUNZ M J, KEMPTER T, et al. Spatial heterogeneity of methane ebullition in a large tropical reservoir[J]. Environmental Science & Technology, 2011, 45(23): 9 866-9 873.
41 OSTROVSKY I. Methane bubbles in Lake Kinneret: quantification and temporal and spatial heterogeneity[J]. Limnology and Oceanography, 2003, 48(3): 1 030-1 036.
42 GRINHAM A, DUNBABIN M, GALE D, et al. Quantification of ebullitive and diffusive methane release to atmosphere from a water storage[J]. Atmospheric Environment, 2011, 45(39): 7 166-7 173.
43 WALTER ANTHONY K M, VAS D A, BROSIUS L, et al. Estimating methane emissions from northern lakes using ice-bubble surveys[J]. Limnology and Oceanography: Methods, 2010, 8(11): 592-609.
44 GREENE S, WALTER ANTHONY K M, ARCHER D, et al. Modeling the impediment of methane ebullition bubbles by seasonal lake ice[J]. Biogeosciences, 2014, 11(23): 6 791-6 811.
45 G?LFALK M, NILSSON P?LEDAL S R, BASTVIKEN D. Sensitive drone mapping of methane emissions without the need for supplementary ground-based measurements[J]. ACS Earth and Space Chemistry, 2021, 5(10): 2 668-2 676.
46 MAHER D T, DREXL M, TAIT D R, et al. iAMES: an inexpensive, automated methane ebullition sensor[J]. Environmental Science & Technology, 2019, 53(11): 6 420-6 426.
47 SIECZKO A K, DUC N T, SCHENK J, et al. Diel variability of methane emissions from lakes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(35): 21 488-21 494.
48 PU Yini, JIA Lei, YANG Shijun, et al. The methane ebullition flux over algae zone of lake Taihu[J]. China Environmental Science, 2018, 38(10): 3 914-3 924.
48 蒲旖旎, 贾磊, 杨诗俊, 等. 太湖藻型湖区CH4冒泡通量[J]. 中国环境科学, 2018, 38(10): 3 914-3 924.
49 DESHMUKH C. Greenhouse gas emissions (CH4, CO2 and N2O) from a newly flooded hydroelectric reservoir in subtropical South Asia: the case of Nam Theun 2 Reservoir, Lao PDR[D]. Toulouse: Université Paul Sabatier-Toulouse III, 2013.
50 PRAETZEL L S E, SCHMIEDESKAMP M, KNORR K H. Temperature and sediment properties drive spatiotemporal variability of methane ebullition in a small and shallow temperate lake[J]. Limnology and Oceanography, 2021, 66(7): 2 598-2 610.
51 ZHANG C, CHENG S G, LONG L, et al. Diel and seasonal methane flux across water-air interface of a subtropic eutrophic pond[J]. Toxicological & Environmental Chemistry, 2018, 100(4): 413-424.
52 ABEN R C H, BARROS N, van DONK E, et al. Cross continental increase in methane ebullition under climate change[J]. Nature Communications, 2017, 8. DOI: 10.1038/s41467-017-01535-y .
53 WILKINSON J, MAECK A, ALSHBOUL Z, et al. Continuous seasonal river ebullition measurements linked to sediment methane formation[J]. Environmental Science & Technology, 2015, 49(22): 13 121-13 129.
54 de MELLO N A S T, BRIGHENTI L S, BARBOSA F A R, et al. Spatial variability of methane (CH4) ebullition in a tropical hypereutrophic reservoir: silted areas as a bubble hot spot[J]. Lake and Reservoir Management, 2018, 34(2): 105-114.
55 DEEMER B R, HARRISON J A, LI S Y, et al. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis[J]. BioScience, 2016, 66(11): 949-964.
56 TAN Z L, ZHUANG Q L. Arctic Lakes are continuous methane sources to the atmosphere under warming conditions[J]. Environmental Research Letters, 2015, 10(5). DOI 10.1088/1748-9326/10/5/054016.
57 ZHANG W, XIAO S, XIE H, et al. Diel and seasonal variability of methane emissions from a shallow and eutrophic pond[J]. Biogeosciences Discussion, 2020. DOI:10.5194/bg-2020-178 .
58 MATTHEWS E, JOHNSON M S, GENOVESE V, et al. Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions[J]. Scientific Reports, 2020, 10(1): 1-9.
59 NIMICK D A, GAMMONS C H, PARKER S R. Diel biogeochemical processes and their effect on the aqueous chemistry of streams: a review[J]. Chemical Geology, 2011, 283(1/2): 3-17.
60 ROSA L P, dos SANTOS M A, MATVIENKO B, et al. Biogenic gas production from major Amazon Reservoirs, Brazil[J]. Hydrological Processes, 2003, 17(7): 1 443-1 450.
61 dos SANTOS M A, ROSA L P, SIKAR B, et al. Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants[J]. Energy Policy, 2006, 34(4): 481-488.
62 MAECK A, DELSONTRO T, MCGINNIS D F, et al. Sediment trapping by dams creates methane emission hot spots[J]. Environmental Science & Technology, 2013, 47(15): 8 130-8 137.
63 BEAULIEU J J, WALDO S, BALZ D A, et al. Methane and carbon dioxide emissions from reservoirs: controls and upscaling[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125. DOI:10.1029/2019JG005474 .
64 LINKHORST A, PARANAíBA J R, MENDON?A R, et al. Spatially resolved measurements in tropical reservoirs reveal elevated methane ebullition at river inflows and at high productivity[J]. Global Biogeochemical Cycles, 2021, 35(5). DOI:10.1029/2020GB006717 .
65 SAWAKUCHI H O, BASTVIKEN D, SAWAKUCHI A O, et al. Methane emissions from Amazonian Rivers and their contribution to the global methane budget[J]. Global Change Biology, 2014, 20(9): 2 829-2 840.
66 KOMIYA S, NOBORIO K, KATANO K, et al. Contribution of ebullition to methane and carbon dioxide emission from water between plant rows in a tropical rice paddy field[J]. International Scholarly Research Notices, 2015. DOI:10.1155/2015/623901 .
67 SOUED C, HARRISON J A, MERCIER-BLAIS S, et al. Reservoir CO2 and CH4 emissions and their climate impact over the period 1900-2060[J]. Nature Geoscience, 2022, 15(9): 700-705.
68 SUN H Y, YU R H, LIU X Y, et al. Drivers of spatial and seasonal variations of CO2 and CH4 fluxes at the sediment water interface in a shallow eutrophic lake[J]. Water Research, 2022, 222. DOI:10.1016/j.watres.2022.118916 .
69 BERBERICH M E, BEAULIEU J J, HAMILTON T L, et al. Spatial variability of sediment methane production and methanogen communities within a eutrophic reservoir: importance of organic matter source and quantity[J]. Limnology and Oceanography, 2020, 65(6): 1 336-1 358.
70 BORGES A V, DARCHAMBEAU F, TEODORU C R, et al. Globally significant greenhouse-gas emissions from African inland waters[J]. Nature Geoscience, 2015, 8(8): 637-642.
71 XUE H, YU R H, ZHANG Z Z, et al. Greenhouse gas emissions from the water-air interface of a grassland river: a case study of the Xilin River[J]. Scientific Reports, 2021, 11(1): 1-14.
72 HOLGERSON M A. Drivers of carbon dioxide and methane supersaturation in small, temporary ponds[J]. Biogeochemistry, 2015, 124(1/2/3): 305-318.
73 PEACOCK M, AUDET J, BASTVIKEN D, et al. Global importance of methane emissions from drainage ditches and canals[J]. Environmental Research Letters, 2021, 16(4). DOI: 10.1088/1748-9326/abeb36 .
74 XU Xinwanghao. The temporal and spatial dynamics of greenhouse gases emissions and controlling factors from coastal saline wetlands in Jiangsu Province, Southeast China[D]. Nanjing: Nanjing University, 2015.
74 许鑫王豪. 滨海湿地温室气体通量及影响因素分析[D]. 南京: 南京大学, 2015.
75 WALTER K M, SMITH L C, STUART CHAPIN F III. Methane bubbling from northern lakes: present and future contributions to the global methane budget[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1 856): 1 657-1 676.
76 GRINHAM A, DUNBABIN M, ALBERT S. Importance of sediment organic matter to methane ebullition in a sub-tropical freshwater reservoir[J]. Science of the Total Environment, 2018, 621: 1 199-1 207.
77 st. LOUIS V L, KELLY C A, DUCHEMIN é,et al. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate[J]. BioScience, 2000, 50(9): 766-775.
78 DAVIDSON T A, AUDET J, JEPPESEN E, et al. Synergy between nutrients and warming enhances methane ebullition from experimental lakes[J]. Nature Climate Change, 2018, 8(2): 156-160.
79 XU Xinwanghao, ZHAO Yifei, ZOU Xinqing, et al. Advances in the research on methane emissions of coastal saline wetlands in China[J]. Journal of Natural Resources, 2015, 30(9): 1 594-1 605.
79 许鑫王豪, 赵一飞, 邹欣庆, 等. 中国滨海湿地CH4通量研究进展[J]. 自然资源学报, 2015, 30(9): 1 594-1 605.
80 XIAO Qitao. Study on greenhouse gases(CO2、CH4、N2O) fluxes of water-air interface in Lake Taihu[D]. Nanjing: Nanjing University of Information Science & Technology, 2014.
80 肖启涛. 太湖水—气界面温室气体(CO2、CH4、N2O)通量研究[D]. 南京: 南京信息工程大学, 2014.
81 TAKAGAKI N, KOMORI S. Effects of rainfall on mass transfer across the air-water interface[J]. Journal of Geophysical Research, 2007, 112(C6). DOI:10.1029/2006JC003752 .
82 FUSé V S, PRIANO M E, WILLIAMS K E, et al. Temporal variation in methane emissions in a shallow lake at a southern mid latitude during high and low rainfall periods[J].Environmental Monitoring and Assessment, 2016, 188(10): 1-12.
83 GUéRIN F, DESHMUKH C, LABAT D, et al. Effect of sporadic destratification, seasonal overturn, and artificial mixing on CH4 emissions from a subtropical hydroelectric reservoir[J]. Biogeosciences, 2016, 13(12): 3 647-3 663.
84 SAVVICHEV A S, KADNIKOV V V, KALLISTOVA A Y, et al. Light-dependent methane oxidation is the major process of the methane cycle in the water column of the Bol’shie Khruslomeny Polar Lake[J]. Microbiology, 2019, 88(3): 370-374.
85 SHELLEY F, INGS N, HILDREW A G, et al. Bringing methanotrophy in rivers out of the shadows[J]. Limnology and Oceanography, 2017, 62(6): 2 345-2 359.
86 GRINHAM A, O’SULLIVAN C, DUNBABIN M, et al. Drivers of anaerobic methanogenesis in sub-tropical reservoir sediments[J]. Frontiers in Environmental Science, 2022, 10: 1-12.
87 HUTTUNEN J T, V?IS?NEN T S, HELLSTEN S K, et al. Methane fluxes at the sediment-water interface in some boreal lakes and reservoirs[J]. Boreal Environment Research, 2006, 11(1): 27-34.
88 VENTURI S, TASSI F, CABASSI J, et al. Exploring methane emission drivers in wetlands: the cases of massaciuccoli and porta lakes (Northern Tuscany, Italy)[J]. Applied Sciences, 2021, 11(24). DOI:10.3390/app112412156 .
89 LI Y, SHANG J H, ZHANG C, et al. The role of freshwater eutrophication in greenhouse gas emissions: a review[J]. Science of the Total Environment, 2021, 768. DOI:10.1016/j.scitotenv.2020.144582 .
90 CONRAD R, ROTHFUSS F. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium[J]. Biology and Fertility of Soils, 1991, 12(1): 28-32.
91 BEAULIEU J J, DELSONTRO T, DOWNING J A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century[J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-09100-5 .
92 LIU Yili, LI Zhulin, HE Yunfeng. The factors influencing generation, transmission and oxidation of methane in wetlands: a review[J]. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(9): 157-162.
92 刘意立, 李竺霖, 何云峰. 影响湿地甲烷产生、传输与氧化因素的研究进展[J]. 西北农林科技大学学报(自然科学版), 2014, 42(9): 157-162.
93 SAWAKUCHI H O, BASTVIKEN D, SAWAKUCHI A O, et al. Oxidative mitigation of aquatic methane emissions in large Amazonian rivers[J]. Global Change Biology, 2016, 22(3): 1 075-1 085.
94 MARTINEZ D, ANDERSON M A. Methane production and ebullition in a shallow, artificially aerated, eutrophic temperate lake (Lake Elsinore, CA)[J]. Science of the Total Environment, 2013, 454: 457-465.
95 LIN Hai, ZHOU Gang, LI Xuguang, et al. Greenhouse gases emissions from pond culture ecosystem of Chinese mitten crab and their comprehensive global warming potentials in summer[J]. Journal of Fisheries of China, 2013, 37(3): 417-424.
95 林海, 周刚, 李旭光, 等. 夏季池塘养殖中华绒螯蟹生态系统温室气体排放及综合增温潜势[J]. 水产学报, 2013, 37(3): 417-424.
96 FEARNSIDE P M. Hydroelectric dams in the Brazilian Amazon as sources of ‘greenhouse’gases[J]. Environmental Conservation, 1995, 22(1): 7-19.
97 KELLY C A, RUDD J W M, BODALY R A, et al. Increases in fluxes of greenhouse gases and methyl mercury following flooding?of?an?experimental?reservoir[J]. Environmental Science & Technology, 1997, 31(5): 1 334-1 344.
98 XU X F, YUAN F M, HANSON P J, et al. Reviews and syntheses: four decades of modeling methane cycling in terrestrial ecosystems[J]. Biogeosciences, 2016, 13(12): 3 735-3 755.
99 WANG Q G, LI S B, JIA P, et al. A review of surface water quality models[J]. The Scientific World Journal, 2013. DOI:10.1155/2013/231768 .
100 KELLNER E, BAIRD A, OOSTERWOUD M, et al. Effect of temperature and atmospheric pressure on methane (CH4) ebullition from near-surface peats[J]. Geophysical Research Letters, 2006, 33(18). DOI:10.1029/2006GL027509 .
101 MA S, JIANG L F, WILSON R M, et al. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data-model fusion[J]. Biogeosciences, 2022, 19(8): 2 245-2 262.
102 TOKIDA T, MIYAZAKI T, MIZOGUCHI M, et al. Falling atmospheric pressure as a trigger for methane ebullition from peatland[J]. Global Biogeochemical Cycles, 2007, 21(2). DOI:10.1029/2006GB002790 .
103 WANG Jiawen, HE Ping, XU Jie, et al. A review on aquatic ecosystem mesocosms[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 1 129-1 140.
103 王佳文, 何萍, 徐杰, 等. 水生态系统中宇宙发展现状[J]. 应用生态学报, 2021, 32(3): 1 129-1 140.
Outlines

/