High-precision Observation of Atmospheric Oxygen in a Typical Industrial City of Lanzhou

  • Li WANG ,
  • Xiaoyue LIU ,
  • Jianping HUANG
Expand
  • 1.Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
    2.Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric and Sciences, Lanzhou University, Lanzhou 730000, China
WANG Li (1989-), female, Baiyin City, Gansu Province, Laboratory technician. Research area includes atmospheric oxygen observation. E-mail: w_l@lzu.edu.cn
HUANG Jianping (1962-), male, Zhangping City, Fujian Province, Professor, Academician of the Chinese Academy of Sciences. Research areas include climate change in semi-arid regions. E-mail: hjp@lzu.edu.cn

Received date: 2023-03-01

  Revised date: 2023-05-31

  Online published: 2023-07-19

Supported by

the National Natural Science Foundation of China “Climate change in arid and semi-arid regions and its effects on hydrologic cycle”(41991231);Youth Science and Technology Fund Project of Gansu Province of China “Temporal and spatial distribution characteristics of atmospheric particulates and ozone in Lanzhou and the causes and simulation analysis of heavy pollution period”(21JR7RA528)

Abstract

Human activities have changed the air oxygen content in urban areas and threatened the regional atmospheric oxygen balance. However, studies on urban atmospheric oxygen (O2) remain limited, and a systematic assessment of the mechanisms that drive urban O2 variability is not yet possible. Therefore, the long-term observation of atmospheric O2 in urban areas is of utmost importance. This study provides an in-depth overview of the Lanzhou online atmospheric oxygen observation platform, which is the first in situ, high-precision, continuous atmospheric O2 observation platform in China. The platform uses a gas chromatography-thermal conductivity detector (GC-TCD) method to measure the atmospheric O2 content and establishes an XGBoost-based correction model for atmospheric O2 observation data. After correction, the observation system error of atmospheric O2 has significantly reduced to -0.68 μmol/mol. The observation results showed that atmospheric O2 has clear seasonal and daily variation characteristics and good correspondence with urban human activity indicators (NOx). Based on the capabilities of the atmospheric oxygen observation platform demonstrated in this study, the platform can detect microvariations in atmospheric O2 against a high background, providing crucial data to support research into urban atmospheric O2 levels. Due to the close relationship between carbon and oxygen cycles, the long-term observation of atmospheric O2 can be a scientific basis for establishing regionally appropriate “double carbon” practical paths.

Cite this article

Li WANG , Xiaoyue LIU , Jianping HUANG . High-precision Observation of Atmospheric Oxygen in a Typical Industrial City of Lanzhou[J]. Advances in Earth Science, 2023 , 38(7) : 715 -728 . DOI: 10.11867/j.issn.1001-8166.2023.035

References

1 HUANG Jianping, LIU Xiaoyue, HE Yongsheng, et al. The oxygen cycle and a habitable Earth [J]. Science China: Earth Sciences, 2021, 51 (4): 487-506.
1 黄建平, 刘晓岳, 何永胜, 等. 氧循环与宜居地球[J]. 中国科学: 地球科学, 2021, 51(4): 487-506.
2 DING Lei, HUANG Jianping, WANG Li, et al. Advances in researches of terrestrial oxygen cycle processes[J]. Advances in Earth Science, 2022, 37(2):135-148.
2 丁磊, 黄建平, 王莉, 等. 陆地氧循环过程研究进展[J]. 地球科学进展, 2022, 37(2):135-148.
3 PENG J, WANG A, LIU Y X, et al. Assessing the atmospheric oxygen balance in a region of rapid urbanization: a case study in the Pearl River Delta, China[J]. Sustainability, 2015, 7(10): 13 055-13 072.
4 LU H L, LIU G F. Opportunity costs of carbon emissions stemming from changes in land use[J]. Sustainability, 2015, 7(4): 3 665-3 682.
5 YANG X B, CHEN Z L, CAI H, et al. A framework for assessment of the influence of China’s urban underground space developments on the urban microclimate[J]. Sustainability, 2014, 6(12): 8 536-8 566.
6 ISHIDOYA S, SUGAWARA H, TERAO Y, et al. O2∶CO2 exchange ratio for net turbulent flux observed in an urban area of Tokyo, Japan, and its application to an evaluation of anthropogenic CO2 emissions[J]. Atmospheric Chemistry and Physics, 2020, 20(9): 5 293-5 308.
7 LIU Y P, YU D Y, XUN B, et al. The potential effects of climate change on the distribution and productivity of Cunninghamia lanceolata in China[J]. Environmental Monitoring and Assessment, 2014, 186(1): 135-149.
8 TIAN Jing. Effects of atmospheric CO2 concentration on vegetation transpiration over China[J]. Advances in Earth Science, 2021, 36(8): 826-835.
8 田静. 大气CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
9 WEI Y, WU J G, HUANG J P, et al. Declining oxygen level as an emerging concern to global cities[J]. Environmental Science & Technology, 2021, 55(12): 7 808-7 817.
10 HUANG J P, HUANG J P, LIU X Y, et al. The global oxygen budget and its future projection[J]. Science Bulletin, 2018, 63(18): 1 180-1 186.
11 RADKEVICH M, SHIPILOVA K, POCHUZHEVSKYI O, et al. Assessment of oxygen concentration reduction near the highway-importance for health and quality of life[J]. International Journal for Quality Research, 2022, 16(3): 863-876.
12 KEELING R F, MANNING A C. Studies of recent changes in atmospheric O2 content [J]. Treatise on Geochemistry, 2014, 5: 385-404.
13 MANNING A C, KEELING R F, SEVERINGHAUS J P. Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer[J]. Global Biogeochemical Cycles, 1999, 13(4): 1 107-1 115.
14 STEPHENS B B, BAKWIN P S, TANS P P, et al. Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(1): 82-94.
15 BENDER M L, SOWERS T, BARNOLA J M, et al. Changes in the O2/N2 ratio of the atmosphere during recent decades reflected in the composition of air in the firn at Vostok Station, Antarctica[J]. Geophysical Research Letters, 1994, 21(3): 189-192.
16 TOHJIMA Y, MUKAI H, MACHIDA T, et al. Gas-chromatographic measurements of the atmospheric oxygen/nitrogen ratio at Hateruma Island and Cape Ochi-ishi, Japan[J]. Geophysical Research Letters, 2003, 30(12). DOI:10.1029/2003GL017282 .
17 STEINBACH J. Enhancing the usability of atmospheric oxygen measurements through emission source characterization and airborne measurements[D]. Postanschrift: Friedrich-Schiller-Universit?t Jena, 2010.
18 POPA M E, GLOOR M, MANNING A C, et al. Measurements of greenhouse gases and related tracers at Bialystok tall tower station in Poland[J]. Atmospheric Measurement Techniques, 2010, 3(2): 407-427.
19 THOMPSON R L, MANNING A C, GLOOR E, et al. In-situ measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany[J]. Atmospheric Measurement Techniques, 2009, 2(2): 573-591.
20 van der LAAN-LUIJKX I T, NEUBERT R E M, van der LAAN S, et al. Continuous measurements of atmospheric oxygen and carbon dioxide on a North Sea gas platform[J]. Atmospheric Measurement Techniques, 2010, 3(1): 113-125.
21 FAN S, GLOOR M, MAHLMAN J, et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models[J]. Science, 1998, 282(5 388): 442-446.
22 GLOOR M, FAN S M, PACALA S, et al. Optimal sampling of the atmosphere for purpose of inverse modeling: a model study[J]. Global Biogeochemical Cycles, 2000, 14(1): 407-428.
23 LIU X Y, HUANG J P, WANG L, et al. “Urban respiration” revealed by atmospheric O2 measurements in an industrial metropolis[J]. Environmental Science & Technology, 2023, 57(6): 2 286-2 296.
24 GINZBURG A S, VINOGRADOVA A A, FEDOROVA E I, et al. Content of oxygen in the atmosphere over large cities and respiratory problems[J]. Izvestiya, Atmospheric and Oceanic Physics, 2014, 50(8): 782-792.
25 KEELING R F. Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: a preliminary study in urban air[J]. Journal of Atmospheric Chemistry, 1988, 7(2): 153-176.
26 LIU Xiaoyue, YU Haipeng, SHENG Xia, et al. Mechanism analysis of a rare “thunder snow” process in semi-arid area[J]. Meteorological Monthly, 2020, 46(12): 1 596-1 607.
26 刘晓岳, 于海鹏, 盛夏, 等. 半干旱区一次罕见 “雷打雪” 天气形成机制分析[J]. 气象, 2020, 46(12): 1 596-1 607.
27 HAN D L, HUANG J P, DING L, et al. Oxygen footprint: an indicator of the anthropogenic ecosystem changes[J]. CATENA, 2021, 206. DOI:10.1016/j.catena.2021.105501 .
28 ZHAO L, OPPENHEIMER M, ZHU Q, et al. Interactions between urban heat islands and heat waves[J]. Environmental Research Letters, 2018, 13(3). DOI:10.1088/1748-9326/aa9f73 .
29 ZONG L, LIU S H, YANG Y J, et al. Synergistic influence of local climate zones and wind speeds on the urban heat island and heat waves in the megacity of Beijing, China[J]. Frontiers in Earth Science, 2021, 9. DOI:10.3389/feart.2021.673786 .
30 HUANG J, LI Y, FU C, et al. Dryland climate change: recent progress and challenges[J]. Reviews of Geophysics, 2017, 55(3): 719-778.
31 KEELING R F, SHERTZ S R. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle[J]. Nature, 1992, 358(6 389): 723-727.
32 BERHANU T A, HOFFNAGLE J, RELLA C, et al. High-precision atmospheric oxygen measurement comparisons between a newly built CRDS analyzer and existing measurement techniques[J]. Atmospheric Measurement Techniques, 2019, 12(12): 6 803-6 826.
33 KEELING R F, MANNING A C, McEVOY E M, et al. Methods for measuring changes in atmospheric O2 concentration and their application in southern hemisphere air[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D3): 3 381-3 397.
34 JIANG X, LI Q B, LIANG M C, et al. Simulation of upper tropospheric CO2 from chemistry and transport models[J]. Global Biogeochemical Cycles, 2008, 22(4). DOI:10.1029/2007GB003049 .
35 BROHAN P, KENNEDY J J, HARRIS I, et al. Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D12). DOI:10.1029/2005JD006548 .
36 FOLLAND C K, RAYNER N A, BROWN S J, et al. Global temperature change and its uncertainties since 1861[J]. Geophysical Research Letters, 2001, 28(13): 2 621-2 624.
37 LI Qingxiang, DONG Wenjie, LI Wei, et al. Uncertainty estimation in temperature changes in China over the past century [J]. Scientific Bulletin, 2010, 55 (16): 1 544-1 554.
37 李庆祥, 董文杰, 李伟, 等. 近百年中国气温变化中的不确定性估计[J]. 科学通报, 2010, 55 (16): 1 544-1 554.
38 ZHANG Kai. Grid emission inventory and its spatial distribution characteristics of major air pollutants in Lanzhou, Western China[D]. Lanzhou: Lanzhou University, 2017.
38 张凯. 中国西部兰州地区主要大气污染物网格化排放清单及其空间分布特征[D]. 兰州: 兰州大学, 2017.
39 SHAW S, van HEYST B. Nitrogen Oxide (NO x ) emissions as an indicator for sustainability[J]. Environmental and Sustainability Indicators, 2022, 15. DOI:10.1016/j.indic.2022.100188 .
40 LIU F, BEIRLE S, ZHANG Q, et al. NO x lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations[J]. Atmospheric Chemistry and Physics, 2016, 16(8): 5 283-5 298.
41 CHENG Linjun. Study on ozone pollution characteristics and zoning management methods in China[D]. Beijing: China University of Geosciences, 2018.
41 程麟钧. 我国臭氧污染特征及分区管理方法研究[D]. 北京: 中国地质大学(北京), 2018.
42 KEELING R F, GRAVEN H D. Insights from time series of atmospheric carbon dioxide and related tracers[J]. Annual Review of Environment and Resources, 2021, 46: 85-110.
Outlines

/