Received date: 2022-12-16
Revised date: 2023-04-13
Online published: 2023-06-07
Supported by
Scientific and Technological Innovation Talent Program of Sichuan Province “Research on analogue experiments of deep geological structure in Sichuan Basin based on geological big data”(2022JDRC0001)
Since the middle of the 20th century, analog experiments have provided an independent method for studying geodynamic processes. Based on analog experiments, this paper reviews the similarity mechanism between the natural prototype and experimental model of geodynamic processes and reviews the mechanism and characteristics of the lithosphere dynamic process revealed by analog experiments. Furthermore, we compare analog data of the Cantabria Belt and Zagros Iran Plateau. Analog experiments use dry particle materials, (non-) linear viscous rheological materials, and viscoelastic materials to establish multilayer material structure models (i.e., double-, three-, and four-layer lithosphere structures). In general, the analog experimental devices include three types: an internal dynamic drive model of the conservation of the system energy material, external dynamic drive model of the open system, and internal and external dynamic hybrid drive models. Geodynamic deformation of the lithosphere is controlled by the coupling of multiple layers of the lithosphere (i.e., elastic strength or viscous stiffness) and an inherited heterogeneous structure. This controls the deformation of the basin-mountain system in the shallow water and lithosphere. The analog experiment data can provide a better explanation of the geodynamic processes and would play an increasingly important role in tectonic evolution, big-data structure of the basin, and disaster warning.
Quanchao WEI , Zijun LIU , Khalid AHMEN , Hongbing GUO , Hongyuan XU , Heng WANG , Bin DENG . A Review on Analog Experiments of Geodynamic Processes[J]. Advances in Earth Science, 2023 , 38(6) : 644 -660 . DOI: 10.11867/j.issn.1001-8166.2023.026
1 | JACOBY W R. Paraffin model experiment of plate tectonics[J]. Tectonophysics, 1976, 35(1/2/3): 103-113. |
2 | KINCAID C, OLSON P. An experimental study of subduction and slab migration[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B13): 13 832-13 840. |
3 | SHEMENDA A I, GROCHOLSKY A L. Physical modeling of slow seafloor spreading[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B5): 9 137-9 153. |
4 | BRUNE J N, ELLIS M A. Structural features in a brittle-ductile wax model of continental extension[J]. Nature,1997,387(6 628):67-70. |
5 | CORTI G, RANALLI G, MULUGETA G, et al. Control of the rheological structure of the lithosphere on the inward migration of tectonic activity during continental rifting[J]. Tectonophysics, 2010, 490(3/4): 165-172. |
6 | DAVY P, COBBOLD P R. Experiments on shortening of a 4-layer model of the continental lithosphere[J]. Tectonophysics, 1991, 188(1/2): 1-25. |
7 | RAMBERG H. Model studies in relation to intrusion of plutonic bodies[J]. Mechanism of Igneous Intrusion,1970(2):261-286. |
8 | WHITEHEAD J A, LUTHER D S. Dynamics of laboratory diapir and plume models[J]. Journal of Geophysical Research, 1975, 80(5): 705-717. |
9 | KOYI H. Analogue modelling: from a qualitative to a quantitative technique—a historical outline[J]. Journal of Petroleum Geology, 1997, 20(2): 223-238. |
10 | DAVAILLE A, LIMARE A. Laboratory studies of mantle convection[M]// Treatise on geophysics. Amsterdam: Elsevier, 2007: 89-165. |
11 | SCHELLART W P, STRAK V. A review of analogue modelling of geodynamic processes: approaches, scaling, materials and quantification, with an application to subduction experiments[J]. Journal of Geodynamics, 2016, 100: 7-32. |
12 | HUBBERT M K. Theory of scale models as applied to the study of geologic structures[J]. Geological Society of America Bulletin, 1937, 48(10): 1 459-1 520. |
13 | COLLETTA B, LETOUZEY J, PINEDO R, et al. Computerized X-ray tomography analysis of sandbox models: examples of thin-skinned thrust systems[J]. Geology, 1991, 19(11): 1 063-1 067. |
14 | ADAM J, KLINKMüLLER M, SCHREURS G, et al. Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation: integration of X-ray computed tomography and digital volume correlation techniques[J]. Journal of Structural Geology, 2013, 55: 127-149. |
15 | ZWAAN F, SCHREURS G, BUITER S J H. A systematic comparison of experimental set-ups for modelling extensional tectonics[J]. Solid Earth, 2019, 10(4): 1 063-1 097. |
16 | RAMBERG H. Model experimentation of the effect of gravity on tectonic processes[J]. Geophysical Journal International, 1967, 14(1/2/3/4): 307-329. |
17 | DIXON J M, SUMMERS J M. Recent developments in centrifuge modelling of tectonic processes: equipment, model construction techniques and rheology of model materials[J]. Journal of Structural Geology, 1985, 7(1): 83-102. |
18 | AUDET P, BüRGMANN R. Dominant role of tectonic inheritance in supercontinent cycles[J]. Nature Geoscience, 2011, 4(3): 184-187. |
19 | ALLEN A P, ALLEN R J. Basin analysis: principles and application to petroleum play assessment[M]. New Jersey:Wiley-Blackwell Press,2013. |
20 | CHEN Wangping, MOLNAR P. Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere[J]. Journal of Geophysical Research: Solid Earth,1983,88(B5):4 183-4 214. |
21 | MAGGI A, JACKSON J A, PRIESTLEY K, et al. A re‐assessment of focal depth distributions in southern Iran, the Tien Shan and northern India: Do earthquakes really occur inthe continental mantle?[J]. Geophysical Journal International, 2000, 143(3): 629-661. |
22 | WATTS A B, BUROV E B. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness[J]. Earth and Planetary Science Letters, 2003, 213(1/2): 113-131. |
23 | BüRGMANN R, DRESEN G. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 531-567. |
24 | ZOBACK M D, ZOBACK M L, MOUNT V S, et al. New evidence on the state of stress of the San andreas fault system[J]. Science, 1987, 238(4 830): 1 105-1 111. |
25 | JACKSON J. Strength of the continental lithosphere: time to abandon the jelly sandwich?[J]. GSA Today, 2002, 12(9): 4-9. |
26 | BUROV E B, WATTS A B. The long-term strength of continental lithosphere: “jelly sandwich” or “crème br?lée”?[J]. GSA Today, 2006, 16(1): 4-10. |
27 | CALIGNANO E, SOKOUTIS D, WILLINGSHOFER E, et al. Asymmetric vs. symmetric deep lithospheric architecture of intra-plate continental orogens[J]. Earth and Planetary Science Letters, 2015, 424: 38-50. |
28 | FACCENDA M, GERYA T V, CHAKRABORTY S. Styles of post-subduction collisional orogeny: influence of convergence velocity, crustal rheology and radiogenic heat production[J]. Lithos, 2008, 103(1/2): 257-287. |
29 | WEIJERMARS R, SCHMELING H. Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity)[J]. Physics of the Earth and Planetary Interiors, 1986, 43(4): 316-330. |
30 | RAMBERG H. Gravity, deformation and the earth’s crust: in theory, experiments and geological application[M]. 2d ed. New York: Academic Press, 1981. |
31 | BYERLEE J. Friction of rocks[J]. Pure and Applied Geophysics, 1978, 116(4): 615-626. |
32 | DAHLEN F A, SUPPE J, DAVIS D. Mechanics of fold-and-thrust belts and accretionary wedges: cohesive Coulomb Theory[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B12): 10 087-10 101. |
33 | LOHRMANN J, KUKOWSKI N, ADAM J, et al. The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges[J]. Journal of Structural Geology, 2003, 25(10): 1 691-1 711. |
34 | PANIEN M, SCHREURS G, PFIFFNER A. Mechanical behaviour of granular materials used in analogue modelling: insights from grain characterisation, ring-shear tests and analogue experiments[J]. Journal of Structural Geology, 2006, 28(9): 1 710-1 724. |
35 | COBBOLD P R, CASTRO L. Fluid pressure and effective stress in sandbox models[J]. Tectonophysics, 1999, 301(1/2): 1-19. |
36 | DUARTE J C, SCHELLART W P, CRUDEN A R. Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology[J]. Geophysical Journal International, 2013, 195(1): 47-66. |
37 | FUNICIELLO F, FACCENNA C, GIARDINI D, et al. Dynamics of retreating slabs: 2. insights from three-dimensional laboratory experiments[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4). DOI:10.1029/2001JB000896 . |
38 | SCHELLART W P. Rheology and density of glucose syrup and honey: determining their suitability for usage in analogue and fluid dynamic models of geological processes[J]. Journal of Structural Geology, 2011, 33(6): 1 079-1 088. |
39 | WILLINGSHOFER E, SOKOUTIS D. Decoupling along plate boundaries: key variable controlling the mode of deformation and the geometry of collisional mountain belts[J]. Geology, 2009, 37(1): 39-42. |
40 | LUTH S, WILLINGSHOFER E, SOKOUTIS D, et al. Does subduction polarity changes below the Alps? Inferences from analogue modelling[J]. Tectonophysics, 2013, 582: 140-161. |
41 | CHEN Z H, SCHELLART W P, DUARTE J C. Quantifying the energy dissipation of overriding plate deformation in three-dimensional subduction models[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(1): 519-536. |
42 | CANIVEN Y, DOMINGUEZ S, SOLIVA R, et al. A new multilayered visco-elasto-plastic experimental model to study strike-slip fault seismic cycle[J]. Tectonics, 2015, 34(2): 232-264. |
43 | EDWARDS S J, SCHELLART W P, DUARTE J C. Geodynamic models of continental subduction and obduction of overriding plate forearc oceanic lithosphere on top of continental crust[J]. Tectonics, 2015, 34(7): 1 494-1 515. |
44 | MARQUES F O. Thrust initiation and propagation during shortening of a 2-layer model lithosphere[J]. Journal of Structural Geology, 2008, 30(1): 29-38. |
45 | SOKOUTIS D, BURG J P, BONINI M, et al. Lithospheric-scale structures from the perspective of analogue continental collision[J]. Tectonophysics, 2005, 406(1/2): 1-15. |
46 | WILLINGSHOFER E, SOKOUTIS D, LUTH S W, et al. Subduction and deformation of the continental lithosphere in response to plate and crust-mantle coupling[J]. Geology, 2013, 41(12): 1 239-1 242. |
47 | CALIGNANO E, SOKOUTIS D, WILLINGSHOFER E, et al. Oblique contractional reactivation of inherited heterogeneities: cause for arcuate orogens[J]. Tectonics, 2017, 36(3): 542-558. |
48 | SCHELLART W P. Kinematics and flow patterns in deep mantle and upper mantle subduction models: influence of the mantle depth and slab to mantle viscosity ratio[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3). DOI:10.1029/2007GC001656 . |
49 | MOLNAR N E, CRUDEN A R, BETTS P G. Interactions between propagating rotational rifts and linear rheological heterogeneities: insights from three-dimensional laboratory experiments[J]. Tectonics, 2017, 36(3): 420-443. |
50 | KINCAID C, GRIFFITHS R W. Laboratory models of the thermal evolution of the mantle during rollback subduction[J]. Nature, 2003, 425(6 953): 58-62. |
51 | SCHELLART W P. Evolution of subduction zone curvature and its dependence on the trench velocity and the slab to upper mantle viscosity ratio[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B11). DOI:10.1029/2009JB006643 . |
52 | BOUTELIER D, ONCKEN O, CRUDEN A R. Trench-parallel shortening in the forearc caused by subduction along a seaward-concave plate boundary: insights from analogue modelling experiments[J]. Tectonophysics, 2014, 611: 192-203. |
53 | SCHELLART W P, LISTER G S. The role of the East Asian active margin in widespread extensional and strike-slip deformation in East Asia[J]. Journal of the Geological Society, 2005, 162(6): 959-972. |
54 | GOREN L, AHARONOV E, MULUGETA G, et al. Ductile deformation of passive margins: a new mechanism for subduction initiation[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B8). DOI:10.1029/2005JB004179 . |
55 | GUILLAUME B, FUNICIELLO F, FACCENNA C, et al. Spreading pulses of the Tyrrhenian Sea during the narrowing of the Calabrian slab[J]. Geology, 2010, 38(9): 819-822. |
56 | DRUKEN K A, LONG M D, KINCAID C. Patterns in seismic anisotropy driven by rollback subduction beneath the High Lava Plains[J]. Geophysical Research Letters, 2011, 38(13).DOI:10.1029/2011GL047541 . |
57 | SOKOUTIS D, WILLINGSHOFER E. Decoupling during continental collision and intra-plate deformation[J]. Earth and Planetary Science Letters, 2011, 305(3/4): 435-444. |
58 | MACDOUGALL J G, KINCAID C, SZWAJA S, et al. The impact of slab dip variations, gaps and rollback on mantle wedge flow: insights from fluids experiments[J]. Geophysical Journal International, 2014, 197(2): 705-730. |
59 | DAVAILLE A, JAUPART C. Transient high-Rayleigh-number thermal convection with large viscosity variations[J].Journal of Fluid Mechanics,1993,253:141-166. |
60 | DAVY P, COBBOLD P R. Indentation tectonics in nature and experiment. 1. experiments scaled for gravity[J]. Bulletin of the Geological Institute of Uppsala,1988,14:129-141. |
61 | AUTIN J, BELLAHSEN N, HUSSON L, et al. Analog models of oblique rifting in a cold lithosphere[J]. Tectonics, 2010, 29(6).DOI:10.1029/2010TC002671 . |
62 | SCHELLART W P, JESSELL M W, LISTER G S. Asymmetric deformation in the backarc region of the Kuril arc, northwest Pacific: new insights from analogue modeling[J]. Tectonics, 2003, 22(5). DOI:10.1029/2002TC001473 . |
63 | CLOETINGH S, BUROV E, POLIAKOV A. Lithosphere folding: primary response to compression? (from central Asia to Paris basin)[J]. Tectonics, 1999, 18(6): 1 064-1 083. |
64 | CLOETINGH S, BUROV E B. Thermomechanical structure of European continental lithosphere, constraints from rheological profiles and EET estimates[J]. Geophysical Journal International, 1996, 124(3): 695-723. |
65 | FERNáNDEZ-LOZANO J, SOKOUTIS D, WILLINGSHOFER E, et al. Cenozoic deformation of Iberia: a model for intraplate mountain building and basin development based on analogue modeling[J]. Tectonics, 2011, 30(1). DOI:10.1029/2010TC002719 . |
66 | BUROV E B. Rheology and strength of the lithosphere[J]. Marine and Petroleum Geology, 2011, 28(8): 1 402-1 443. |
67 | BUROV E B, LOBKOVSKY L I, CLOETINGH S, et al. Continental lithosphere folding in Central Asia (part II): constraints from gravity and topography[J]. Tectonophysics, 1993, 226(1/2/3/4): 73-87. |
68 | BURG J P, PODLADCHIKOV Y. From buckling to asymmetric folding of the continental lithosphere: numerical modelling and application to the Himalayan syntaxes[J]. Geological Society, London, Special Publications, 2000, 170(1): 219-236. |
69 | BENDICK R, FLESCH L. A review of heterogeneous materials and their implications for relationships between kinematics and dynamics in continents[J]. Tectonics, 2013, 32(4): 980-992. |
70 | SCHUELLER S, GUEYDAN F, DAVY P. Mechanics of the transition from localized to distributed fracturing in layered brittle-ductile systems[J]. Tectonophysics, 2010, 484(1/2/3/4): 48-59. |
71 | LUTH S, WILLINGSHOFER E, SOKOUTIS D, et al. Analogue modelling of continental collision: influence of plate coupling on mantle lithosphere subduction, crustal deformation and surface topography[J]. Tectonophysics, 2010, 484(1/2/3/4): 87-102. |
72 | BUROV E, YAMATO P. Continental plate collision, P-T-t-z conditions and unstable vs. stable plate dynamics: insights from thermo-mechanical modelling[J]. Lithos, 2008, 103(1/2): 178-204. |
73 | MIDTKANDAL I, BRUN J P, GABRIELSEN R H, et al. Control of lithosphere rheology on subduction polarity at initiation: insights from 3D analogue modelling[J]. Earth and Planetary Science Letters, 2013, 361: 219-228. |
74 | AGOSTINI A, CORTI G, ZEOLI A, et al. Evolution, pattern, and partitioning of deformation during oblique continental rifting: inferences from lithospheric-scale centrifuge models[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(11).DOI:10.1029/2009GC002676 . |
75 | REITER K, KUKOWSKI N, RATSCHBACHER L. The interaction of two indenters in analogue experiments and implications for curved fold-and-thrust belts[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 132-146. |
76 | SUN M, YIN A, YAN D P, et al. Role of pre-existing structures in controlling the Cenozoic tectonic evolution of the eastern Tibetan Plateau: new insights from analogue experiments[J]. Earth and Planetary Science Letters, 2018, 491: 207-215. |
77 | SOKOUTIS D, BONINI M, MEDVEDEV S, et al. Indentation of a continent with a built-in thickness change: experiment and nature[J]. Tectonophysics, 2000, 320(3/4): 243-270. |
78 | FERNáNDEZ-LOZANO J, GUTIéRREZ-ALONSO G, WILLINGSHOFER E, et al. Shaping of intraplate mountain patterns: the Cantabrian orocline legacy in Alpine Iberia[J]. Lithosphere, 2019, 11(5): 708-721. |
79 | MARQUES F O, COBBOLD P R. Effects of topography on the curvature of fold-and-thrust belts during shortening of a 2-layer model of continental lithosphere[J]. Tectonophysics, 2006, 415(1/2/3/4): 65-80. |
80 | PASTOR-GALAN D, GUTIERREZ-ALONSO G, ZULAUF G, et al. Analogue modeling of lithospheric-scale orocline buckling: constraints on the evolution of the Iberian-Armorican Arc[J]. Geological Society of America Bulletin, 2012, 124(7/8): 1 293-1 309. |
81 | GUTIERREZ-ALONSO G, MURPHY J B, FERNANDEZ-SUAREZ J, et al. Lithospheric delamination in the core of Pangea: Sm-Nd insights from the Iberian mantle[J]. Geology, 2011, 39(2): 155-158. |
82 | MURPHY J B, QUESADA C, GUTIéRREZ-ALONSO G, et al. Reconciling competing models for the tectono-stratigraphic zonation of the Variscan orogen in Western Europe[J]. Tectonophysics, 2016, 681: 209-219. |
83 | BERGAMIN J, de VICENTE G, TEJERO R,et al. Cuantificación del desplazamiento dextroso Alpino en la cordillera Ibérica a partir de datos gravimétricos[J]. Geogaceta,1996,20(4):917-920. |
84 | TAVANI S, QUINTà A, GRANADO P. Cenozoic right-lateral wrench tectonics in the Western Pyrenees (Spain): the Ubierna Fault System[J]. Tectonophysics, 2011, 509(3/4): 238-253. |
85 | CASAS-SAINZ A M, MAESTRO-GONZáLEZ A. Deflection of a compressional stress field by large-scale basement faults. A case study from the Tertiary Almazán Basin (Spain)[J]. Tectonophysics, 1996, 255(1/2): 135-156. |
86 | VICENTE G D, VEGAS R, MU?OZ-MARTíN A, et al. Oblique strain partitioning and transpression on an inverted rift: the Castilian Branch of the Iberian Chain[J]. Tectonophysics, 2009, 470(3/4): 224-242. |
/
〈 |
|
〉 |