Received date: 2022-10-18
Revised date: 2022-12-15
Online published: 2023-04-18
Supported by
the National Social Science Foundation of China “Research on the security and stability strategy of China’s Strategic Industrial and Supply chain of mineral resources 2025-2060”(22XGL003);Key Research Base of Humanities and Social Sciences in Universities of Jiangxi Province, Mining Development Research Center of Jiangxi University of Science and Technology, Major Bidding Project of 2022 “Theory and method of strategic management of strategic mineral resources industry under sudden environment”(KYZX2022-1)
The inconsistency between the supply and demand of lithium carbonate is becoming increasingly serious. Scientific prediction of the future lithium carbonate demand is of great significance for China’s lithium resource production, import and export arrangements, and national energy policy formulation. Based on a combined model of grey correlation analysis and the ARIMA-GM-BP neural network, data on the driving variables of China’s per capita GDP, industrial structure, urbanization level, grease production, ceramic production, glass production, air conditioning production, lithium-ion battery production, and new energy vehicle production in 2002-2021 were selected to predict China’s lithium carbonate resource demand between 2025 and 2035. The results show that the selected driving variables are highly correlated with China's lithium carbonate resource demand, and the combined model is more accurate than a single model. The predicted average quantity demand for lithium carbonate in 2025, 2030, and 2035 is 0.42 million tons, 0.69 million tons, and 1.03 million tons, respectively. Accordingly, some policy suggestions have been proposed.
Key words: ARIMA-GM-BP model; Lithium carbonate demand; Scenario analysis
Minggui ZHENG , Ming YU , Qiurong FAN , Yuhua LIN . China’s Lithium Carbonate Demand Forecast 2025-2035[J]. Advances in Earth Science, 2023 , 38(4) : 377 -387 . DOI: 10.11867/j.issn.1001-8166.2023.011
1 | XING Jiayun, PENG Hao, ZHANG Yanfei, et al. Global lithium demand and supply[J]. Resources Science, 2015, 37(5): 988-997. |
1 | 邢佳韵, 彭浩, 张艳飞, 等. 世界锂资源供需形势展望[J]. 资源科学, 2015, 37(5): 988-997. |
2 | ZHANG Zenan, ZHANG Zhaozhi, WU Qing, et al. Chinese lithium mineral resource demand forecast[J]. China Mining Magazine, 2020, 29(7): 9-15. |
2 | 张泽南, 张照志, 吴晴, 等. 中国锂矿资源需求预测[J]. 中国矿业, 2020, 29(7): 9-15. |
3 | LIU D H, GAO X Y, AN H Z, et al. Supply and demand response trends of lithium resources driven by the demand of emerging renewable energy technologies in China[J]. Resources, Conservation and Recycling, 2019, 145: 311-321. |
4 | ZIEMANN S, MüLLER D B, SCHEBEK L, et al. Modeling the potential impact of lithium recycling from EV batteries on lithium demand: a dynamic MFA approach[J]. Resources, Conservation and Recycling, 2018, 133: 76-85. |
5 | ROMANUKE V. ARIMA model optimal selection for time series forecasting[J]. Maritime Technical Journal, 2022, 224(1): 28-40. |
6 | AHMED T, HESHAM H, AMR B. WITHDRAWN: forecasting of nonlinear time series using artificial neural network[J]. Future Computing and Informatics Journal, 2018, 3(2): 143-151. |
7 | WANG Lu, SHA Xiuyan, XUE Ying. Improved GM(1,1) grey prediction model and its application[J]. Statistics & Decision, 2016(10): 74-77. |
7 | 王璐, 沙秀艳, 薛颖. 改进的GM(1,1)灰色预测模型及其应用[J]. 统计与决策, 2016(10): 74-77. |
8 | ZHAO Chengbo, MAO Chunmei. Forecast of intensity of carbon emission to China based on BP neural network and ARIMA combined model[J]. Resources and Environment in the Yangtze Basin, 2012, 21(6): 665-671. |
8 | 赵成柏, 毛春梅. 基于ARIMA和BP神经网络组合模型的我国碳排放强度预测[J]. 长江流域资源与环境, 2012, 21(6): 665-671. |
9 | WU Xiaofeng, YANG Yingmei, CHEN Yaotong. ARIMA combined prediction model based on BP neural network error correction[J]. Statistics & Decision, 2019, 35(15): 65-68. |
9 | 吴晓峰, 杨颖梅, 陈垚彤. 基于BP神经网络误差校正的ARIMA组合预测模型[J]. 统计与决策, 2019, 35(15): 65-68. |
10 | MORDJAOUI M, HADDAD S, MEDOUED A, et al. Electric load forecasting by using dynamic neural network[J]. International Journal of Hydrogen Energy, 2017, 42(28): 17 655-17 663. |
11 | ZHANG Kan, LIU Baoping, HUANG Dong. Study on nonlinear residual grey Verhulst metering combination forecasting model of small sample based on EGA algorithm[J]. Systems Engineering-Theory & Practice, 2017, 37(10): 2 630-2 639. |
11 | 张侃, 刘宝平, 黄栋. 基于EGA算法的小样本非线性残差灰色Verhulst计量组合预测模型[J]. 系统工程理论与实践, 2017, 37(10): 2 630-2 639. |
12 | WANG Chong. Prediction of China’s energy consumption demand trend based on model combination method[J]. Statistics & Decision, 2018, 34(20): 86-89. |
12 | 王翀. 基于模型组合法的我国能源消费需求趋势预测[J]. 统计与决策, 2018, 34(20): 86-89. |
13 | ZHAO Yawei, CHEN Yanjing. A combined prediction model for multi-dimensional time series[J]. Journal of University of Chinese Academy of Sciences, 2016, 33(6): 825-833. |
13 | 赵亚伟, 陈艳晶. 多维时间序列的组合预测模型[J]. 中国科学院大学学报, 2016, 33(6): 825-833. |
14 | ZHAI Jing, CAO Jun. Combined forecasting model based on time series ARIMA and BP neural network[J]. Statistics & Decision, 2016(4): 29-32. |
14 | 翟静, 曹俊. 基于时间序列ARIMA与BP神经网络的组合预测模型[J]. 统计与决策, 2016(4): 29-32. |
15 | PENG Naichi, DANG Ting. Combined forecasting model based on ARMA-GM-BP and its application[J]. Statistics & Decision, 2016(2): 80-82. |
15 | 彭乃驰, 党婷. 基于ARMA-GM-BP组合预测模型及应用[J]. 统计与决策, 2016(2): 80-82. |
16 | ZHENG Minggui, LI Qi. Scenario prediction of China’s oil resource demand in 2020-2030[J]. Advances in Earth Science, 2020, 35(3): 286-296. |
16 | 郑明贵, 李期. 中国2020—2030年石油资源需求情景预测[J]. 地球科学进展, 2020, 35(3): 286-296. |
17 | Research Group of the Macreconomic Research Center of the CASS. Research on the potential growth of the Chineses economy in the next 15 years and the main goals and indicators of economic and social development during the 14th Five-Year Plan Period[J]. China Industrial Economics, 2020(4): 5-22. |
17 | 中国社会科学院宏观经济研究中心课题组. 未来15年中国经济增长潜力与“十四五”时期经济社会发展主要目标及指标研究[J]. 中国工业经济, 2020(4): 5-22. |
18 | Nations United,Department of Economic and Social Affairs, Division( Population 2022). World population prospects 2022[EB/OL](2022-07-11)[2022-10-23]. . |
19 | WU Qinglong, WANG Jianming, GUO Pibin. Peak regional carbon emissions based on open STIRPAT modeling in an energy-producing region of Shanxi[J]. Resources Science, 2018, 40(5): 1 051-1 062. |
19 | 吴青龙, 王建明, 郭丕斌. 开放STIRPAT模型的区域碳排放峰值研究: 以能源生产区域山西省为例[J]. 资源科学, 2018, 40(5): 1 051-1 062. |
20 | FENG Qiang. The developing trend of lubricating greases in China driven by“double carbon” Goal[J]. Synthetic Lubricants, 2022, 49(3): 49-54. |
20 | 冯强. “双碳”目标驱动下我国润滑脂的发展趋势[J]. 合成润滑材料, 2022, 49(3): 49-54. |
21 | LI Haidong, FANG Zhibin. Research on the development of Chinese ceramic tile industry under one belt and one road initiative[J]. Journal of Hebei University (Philosophy and Social Science), 2018, 43(2): 126-137. |
21 | 李海东, 方志斌. “一带一路”与中国建筑陶瓷产业发展研究[J]. 河北大学学报(哲学社会科学版), 2018, 43(2): 126-137. |
22 | LIU Xiaoyan, ZHU Fenfen, ZHAO Bing. Study on glass resource metabolism and future demand forecast in China based on material flow analysis[J]. China Environmental Science, 2022, 42(5): 1-7. |
22 | 柳晓燕, 朱芬芬, 赵冰. 基于物质流分析的中国玻璃资源代谢和未来需求预测研究[J]. 中国环境科学, 2022, 42(5): 1-7. |
23 | ZHANG Feng, ZHANG Lina, BAI Junwen. 2021 market analysis of refrigeration and air-conditioning industry in China[J]. Refrigeration and Air-Conditioning, 2022, 22(8): 1-6, 12. |
23 | 张枫, 张丽娜, 白俊文. 2021年我国制冷空调行业市场分析[J]. 制冷与空调, 2022, 22(8): 1-6, 12. |
24 | YIN Renshu, YANG Yanping, XIE Linming, et al. Demand prediction of non-ferrous metal resources driven by new energy vehicle battery[J]. Resources & Industries, 2016, 18(5): 85-91. |
24 | 殷仁述, 杨沿平, 谢林明, 等. 新能源汽车动力电池对有色金属资源需求预测[J]. 资源与产业, 2016, 18(5): 85-91. |
25 | CHEN Wei. Forecast of import and export trade based on combination model of linear ARIMA and nonlinear BP neural network[J]. Statistics & Decision, 2015(22): 47-49. |
25 | 陈蔚. 基于线性ARIMA与非线性BP神经网络组合模型的进出口贸易预测[J]. 统计与决策, 2015(22): 47-49. |
26 | SHI Yunyang, LI Mu, FU Ye, et al. Multi-scenario traffic land demand forecasting based on grey system-BP neural network model: a case study of urban agglomeration in the middle reaches of the Yangtze River[J]. Journal of China Agricultural University, 2020, 25(6): 142-153. |
26 | 史云扬, 李牧, 付野, 等. 基于灰色-BP神经网络模型的多情景交通用地需求预测——以长江中游城市群为例[J]. 中国农业大学学报, 2020, 25(6): 142-153. |
27 | JIANG Ronghua, CAO Qi. Prediction of enterprise human resource demand based on grey BP neural network[J]. Human Resource Development of China, 2011(11): 42-46. |
27 | 蒋蓉华, 曹琦. 基于灰色BP神经网络的企业人力资源需求预测[J]. 中国人力资源开发, 2011(11): 42-46. |
28 | YUAN Xiaojing, MA Zhe, LI Jianwu. Forecast and suggestions of lithium resources demand for new energy vehicles in China[J]. China Mining Magazine, 2019, 28(8): 61-65. |
28 | 袁小晶, 马哲, 李建武. 中国新能源汽车产业锂资源需求预测及建议[J]. 中国矿业, 2019, 28(8): 61-65. |
29 | RU Cunyi. Evaluation of supply and demand situation of lithium mine resources in China[D]. Beijing: China University of Geosciences (Beijing), 2021. |
29 | 茹存一. 中国锂矿资源供需形势评价[D]. 北京: 中国地质大学(北京), 2021. |
30 | HUANG Li, LI Fangqin, DAI Tao, et al. Recycling potential assessment of lithium metal based on existing recycling technology and process[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 31-37. |
30 | 黄莉, 李芳琴, 代涛, 等. 锂金属回收潜力研究基于现有回收技术与工艺[J]. 矿产保护与利用, 2021, 41(5): 31-37. |
31 | MA Zhe, LI Jianwu. Analysis of China’s lithium resources supply system: status, issues and suggestions[J]. China Mining Magazine, 2018, 27(10): 1-7. |
31 | 马哲,李建武. 中国锂资源供应体系研究:现状、问题与建议[J]. 中国矿业, 2018, 27(10): 1-7. |
32 | 上海有色网. 详细分析我国碳酸锂行业需求预测[EB/OL](2022-01-15)[2022-09-27]. . |
33 | 郑绵平.中国锂电产业发展指数[EB/OL](2022-04-28)[2022-09-28]. . |
/
〈 |
|
〉 |