Research Progress on the Mutual Transformation of Inorganic to Organic Mercury in Wetlands
Received date: 2022-09-23
Revised date: 2022-12-27
Online published: 2023-04-18
Supported by
the National Natural Science Foundation of China “Study on the influence mechanism of typical antibiotics on denitrification process in groundwater system”(41731282);The China Geological Survey“Response of organic pollutant components in groundwater to recharge mode— quality control of water sample test and analysis”(DD20190323)
Mercury has received widespread attention as a toxic heavy metal contaminant. Organic mercury, especially methyl mercury (MeHg), is more toxic than inorganic mercury and can easily accumulate in the food chain; therefore, the problem of inorganic to organic mercury conversion has attracted much attention in recent years. Most previous research has focused on mercury methylation in marine environments, and research on freshwater environments, especially wetlands, is lacking. The uniqueness and complexity of the wetland environment make it a prominent MeHg production unit, and the bioaccumulation effect is evident. In the present study, the pathways, mechanisms, influencing factors, and related biological effects of organic mercury conversion to inorganic mercury in wetlands are systematically summarized. Sediments, particulate organic carbon, and periphyton organisms are important microenvironments for MeHg generation, and frequent interactions between organisms guarantee the high methylation potential of wetlands. Therefore, strengthening the research on Hg methylation in various wetlands is of great significance for protecting the ecology of wetlands and the health of residents.
Key words: Wetland; Mercury methylation; Demethylation; Biological function
Bo LI , Yitong YIN , Xiangyu GUAN , Xiong WU , Ximing LUO . Research Progress on the Mutual Transformation of Inorganic to Organic Mercury in Wetlands[J]. Advances in Earth Science, 2023 , 38(4) : 363 -376 . DOI: 10.11867/j.issn.1001-8166.2022.091
1 | GALLORINI A, LOIZEAU J L. Mercury methylation in oxic aquatic macro-environments: a review[J]. Journal of Limnology, 2021, 80(2). DOI:10.4081/jlimnol.2021.2007 . |
2 | LIU C T, LIU J L, ZHOU C Y, et al. Redox potential and C/N ratio predict the structural shift of mercury methylating microbe communities in a subalpine sphagnum peatland[J]. Geoderma, 2021, 403. DOI:10.1016/j.geoderma.2021.115375 . |
3 | O’CONNOR D, HOU D Y, OK Y S, et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical review[J]. Environment International, 2019, 126: 747-761. |
4 | LOUX N T. An assessment of thermodynamic reaction constants for simulating aqueous environmental monomethylmercury speciation[J]. Chemical Speciation & Bioavailability, 2007, 19(4): 183-196. |
5 | DRISCOLL C T, MASON R P, CHAN H M, et al. Mercury as a global pollutant: sources, pathways, and effects[J].Environmental Science & Technology, 2013, 47(10): 4 967-4 983. |
6 | HOGGARTH C G J, HALL B D, MITCHELL C P J. Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America[J]. Environmental Pollution, 2015, 205: 269-277. |
7 | ZHANG Z S, LI M, LI Z, et al. Unexpected high methylmercury contents related to soil organic carbon and its molecular composition in wetland soils of the Yarlung Tsangbo River, Tibet[J]. Geoderma, 2020, 377. DOI:10.1016/j.geoderma.2020.114607 . |
8 | DIEZ E G, LOIZEAU J L, COSIO C, et al. Role of settling particles on mercury methylation in the oxic water column of freshwater systems[J].Environmental Science & Technology, 2016, 5 021: 11 672-11 679. |
9 | ECKLEY C S, HINTELMANN H. Determination of mercury methylation potentials in the water column of lakes across Canada[J]. Science of the Total Environment, 2006, 368(1): 111-125. |
10 | MONPERRUS M, TESSIER E, AMOUROUX D, et al. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the mediterranean sea[J]. Marine Chemistry, 2007, 107(1): 49-63. |
11 | HAMELIN S, PLANAS D, AMYOT M. Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada)[J]. Science of the Total Environment, 2015, 512/513: 464-471. |
12 | AYANLADE A, PROSKE U. Assessing wetland degradation and loss of ecosystem services in the Niger Delta, Nigeria[J].Marine and Freshwater Research, 2016, 67: 828-836. |
13 | SCHAEFER J K, KRONBERG R M, BJORN E, et al. Anaerobic guilds responsible for mercury methylation in boreal wetlands of varied trophic status serving as either a methylmercury source or sink[J]. Environmental Microbiology, 2020, 22(9): 3 685-3 699. |
14 | St. LOUIS V L, RUDD J W M, KELLY C A,et al. Importance of wetlands as sources of methyl mercury to boreal forest ecosystems[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51(5): 1 065-1 076. |
15 | WEBER J H. Review of possible paths for abiotic methylation of Mercury(II) in the aquatic environment[J]. Chemosphere, 1993, 26(11): 2 063-2 077. |
16 | YU R Q, BARKAY T. Microbial mercury transformations: molecules, functions and organisms[J]. Advances in Applied Microbiology, 2022, 118: 31-90. |
17 | PARKS J M, JOHS A, PODAR M, et al. The genetic basis for bacterial mercury methylation[J]. Science, 2013, 339(6 125): 1 332-1 335. |
18 | GORDON J, QUINTON W, BRANFIREUN B A, et al. Mercury and methylmercury biogeochemistry in a thawing permafrost wetland complex, northwest territories, Canada[J]. Hydrological Processes, 2016, 30(20): 3 627-3 638. |
19 | MA M, DU H X, WANG D Y. Mercury methylation by anaerobic microorganisms: a review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(20): 1 893-1 936. |
20 | XU J Y, LIEM-NGUYEN V, BUCK M, et al. Mercury methylating microbial community structure in boreal wetlands explained by local physicochemical conditions[J]. Frontiers in Environmental Science, 2021, 8. DOI:10.3389/fenvs.2020.518662 . |
21 | COMPEAU G C, BARTHA R. Sulfate-reducing bacteria:principal methylators of mercury in anoxic estuarine sediment[J]. Applied and Environmental Microbiology, 1985, 50(2): 498-502. |
22 | FLEMING E J, MACK E E, GREEN P G, et al. Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium[J]. Applied and Environmental Microbiology, 2006, 72(1): 457-464. |
23 | GILMOUR C C, PODAR M, BULLOCK A L, et al. Mercury methylation by novel microorganisms from new environments[J]. Environmental Science & Technology, 2013, 47(20): 11 810-11 820. |
24 | EKSTROM E B, MOREL F M M, BENOIT J M. Mercury methylation independent of the acetyl-coenzyme A pathway in sulfate-reducing bacteria[J]. Applied and Environmental Microbiology, 2003, 69(9): 5 414-5 422. |
25 | CHOI S C, CHASE T, BARTHA R. Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS[J]. Applied And Environmental Microbiology, 1994, 60(11): 4 072-4 077. |
26 | GU Chunhao, XU Huaifeng, QIU Guangle. The progress in research on mechanism of microbial mercury methylation and de-methylation[J]. Environmental Chemistry, 2013, 32(6): 926-936. |
26 | 谷春豪, 许怀凤, 仇广乐.汞的微生物甲基化与去甲基化机理研究进展[J].环境化学, 2013, 32(6): 926-936. |
27 | REGNELL O, WATRAS C J. Microbial mercury methylation in aquatic environments: a critical review of published field and laboratory studies[J]. Environmental Science & Technology, 2019, 53(1): 4-19. |
28 | DATE S S, PARKS J M, RUSH K W, et al. Kinetics of enzymatic mercury methylation at nanomolar concentrations catalyzed by hgcAB [J]. Applied and Environmental Microbiology, 2019, 85(13). DOI:10.1128/AEM.00438-19 . |
29 | QIAN C, CHEN H M, JOHS A, et al. Quantitative proteomic analysis of biological processes and responses of the bacterium Desulfovibrio desulfuricans ND132 upon deletion of its mercury methylation genes[J]. Proteomics, 2018, 18(17). DOI:10.1002/pmic.201700479 . |
30 | GILMOUR C C, ELIAS D A, KUCKEN A M, et al. Sulfate-reducing bacterium desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation[J]. Applied and Environmental Microbiology, 2011, 77(12): 3 938-3 951. |
31 | BARKAY T, WAGNER-DOBLER I. Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment[J]. Advances in Applied Microbiology, 2005, 57. DOI:10.1016/S0065-2164(05)57001-1 . |
32 | SELLERS P, KELLY C A, RUDD J W M, et al. Photodegradation of methylmercury in lakes[J]. Nature, 1996, 380(6 576): 694-697. |
33 | LI Y B, MAO Y X, LIU G L, et al. Degradation of methylmercury and its effects on mercury distribution and cycling in the Florida Everglades[J]. Environmental Science & Technology, 2010, 44(17): 6 661-6 666. |
34 | TAI C, LI Y B, YIN Y G, et al. Methylmercury photodegradation in surface water of the Florida Everglades: importance of dissolved organic matter-methylmercury complexation[J]. Environmental Science & Technology, 2014, 48(13): 7 333-7 340. |
35 | BLACK F J, POULIN B A, FLEGAL A R. Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters[J]. Geochimica et Cosmochimica Acta, 2012, 84: 492-507. |
36 | HAMMERSCHMIDT C R, FITZGERALD W F. Iron-mediated photochemical decomposition of methylmercury in an Arctic Alaskan Lake[J]. Environmental Science & Technology, 2010, 44(16): 6 138-6 143. |
37 | ZHANG T, HSU-KIM H. Photolytic degradation of methylmercury enhanced by binding to natural organic ligands[J]. Nature Geoscience, 2010, 3(7): 473-476. |
38 | FERNANDEZ-GOMEZ C, DROTT A, BJORN E, et al. Towards universal wavelength-specific photodegradation rate constants for methyl mercury in humic waters, exemplified by a boreal lake-wetland gradient[J]. Environmental Science & Technology, 2013, 47(12): 6 279-6 287. |
39 | BOYD E S, KING S, TOMBERLIN J K, et al. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming[J]. Environmental Microbiology, 2009, 11(4): 950-959. |
40 | QIAN Y, YIN X P, LIN H, et al. Why dissolved organic matter enhances photodegradation of methylmercury[J]. Environmental Science & Technology Letters, 2014, 1(10): 426-431. |
41 | BARKAY T, GU B H. Demethylation─the other side of the mercury methylation coin: a critical review[J]. ACS Environmental Au, 2022, 2(2): 77-97. |
42 | KHAN M A K, WANG F Y. Chemical demethylation of methylmercury by selenoamino acids[J]. Chemical Research in Toxicology, 2010, 23(7): 1 202-1 206. |
43 | ASADUZZAMAN A M, SCHRECKENBACH G. Degradation mechanism of methyl mercury selenoamino acid complexes: a computational study[J]. Inorganic Chemistry, 2011, 50(6): 2 366-2 372. |
44 | WEST J, GRAHAM A M, LIEM-NGUYEN V, et al. Dimethylmercury degradation by dissolved sulfide and mackinawite[J]. Environmental Science & Technology, 2020, 54(21): 13 731-13 738. |
45 | DU H X, MA M, IGARASHI Y, et al. Biotic and abiotic degradation of methylmercury in aquatic ecosystems: a review[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(5): 605-611. |
46 | BOYD E S, BARKAY T. The mercury resistance operon: from an origin in a geothermal environment to an efficient detoxification machine[J]. Frontiers in Microbiology, 2012, 3. DOI:10.3389/fmicb.2012.00349 . |
47 | CHRISTAKIS C A, BARKAY T, BOYD E S. Expanded diversity and phylogeny of mer genes broadens mercury resistance paradigms and reveals an origin for MerA among thermophilic Archaea[J]. Frontiers in Microbiology, 2021, 12. DOI:10.3389/fmicb.2021.682605 . |
48 | SCHAEFER J K, LETOWSKI J, BARKAY T. Mer-mediated resistance and volatilization of Hg(II) under anaerobic conditions[J]. Geomicrobiology Journal, 2002, 19(1): 87-102. |
49 | BROWN N L, MISRA T K, WINNIE J N, et al. The nucleotide-sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501: further evidence for mer genes which enhance the activity of the mercuric ion detoxification system[J]. Molecular and General Genetics MGG, 1986, 202(1): 143-151. |
50 | BARKAY T, MILLER S M, SUMMERS A O. Bacterial mercury resistance from atoms to ecosystems[J]. FEMS Microbiology Reviews, 2003, 27(2/3): 355-384. |
51 | OREMLAND R S, MILLER L G, DOWDLE P, et al. Methylmercury oxidative-degradation potentials in contaminated and pristine sediments of the Carson River, Nevada[J]. Applied and Environmental Microbiology, 1995, 61(7): 2 745-2 753. |
52 | MARVIN-DIPASQUALE M C, OREMLAND R S. Bacterial methylmercury degradation in Florida Everglades peat sediment[J]. Environmental Science & Technology, 1998, 32(17): 2 556-2 563. |
53 | OREMLAND R S, CULBERTSON C W, WINFREY M R. Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation[J]. Applied and Environmental Microbiology, 1991, 57(1): 130-137. |
54 | XIANG Y P, LIU G L, YIN Y G, et al. Periphyton as an important source of methylmercury in Everglades water and food web[J]. Journal of Hazardous Materials, 2021, 410: 12 455.1-12 455.7 |
55 | ZHENG D M, LI X Y, LI H, et al. Changes of mercury and methylmercury content and mercury methylation in suaeda salsa soil under different salinity[J]. Environmental Geochemistry and Health, 2022, 44(4): 1 399-1 407. |
56 | WANG Qichao, LIU Ruhai, Xianguo Lü, et al. Progress of study on the mercury process in the wetland environment[J]. Advances in Earth Science, 2002, 17(6): 881-885. |
56 | 王起超, 刘汝海, 吕宪国, 等.湿地汞环境过程研究进展[J].地球科学进展, 2002, 17(6): 881-885. |
57 | WU Z Y, LI Z K, SHAO B, et al. Impact of dissolved organic matter and environmental factors on methylmercury concentrations across aquatic ecosystems inferred from a global dataset[J]. Chemosphere, 2022, 294. DOI:10.1016/j.chemosphere.2002.133713 . |
58 | BRIDOU R, MONPERRUS M, GONZALEZ P R, et al. Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using species-specific isotopic tracers[J]. Environmental Toxicology and Chemistry, 2011, 30(2): 337-344. |
59 | SCHAEFER J K, ROCKS S S, ZHENG W,et al. Active transport,substrate specificity,and methylation of Hg(II)in anaerobic bacteria[J]. Proceedings of the National Academy of Scienc-es of the United States of America,2011,108(21):8 714-8 719. |
60 | HSU-KIM H, KUCHARZYK K H, ZHANG T, et al. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review[J]. Environmental Science & Technology, 2013, 47(6): 2 441-2 456. |
61 | GIONFRIDDO C M, TATE M T, WICK R R, et al. Microbial mercury methylation in Antarctic Sea ice[J]. Nature Microbiology, 2016, 1. DOI:10.1038/nmicrobiol.2016.127 . |
62 | ZOU Yan, SI Youbin, YAN Xue, et al. Research on mercury methylation by Geobacter sulfurreducens and its influencing factors[J]. Environmental Science, 2012, 33(9): 3 247-3 252. |
62 | 邹嫣, 司友斌, 颜雪, 等. Geobacter sulfurreducens对汞的甲基化及其影响因素研究[J].环境科学, 2012, 33(9): 3 247-3 252. |
63 | YU R Q, FLANDERS J R, MACK E E, et al. Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments[J]. Environmental Science & Technology, 2012, 46(5): 2 684-2 691. |
64 | DUARTE A C, PEREIRA M E, OLIVEIRA J P, et al. Mercury desorption from contaminated sediments[J]. Water Air & Soil Pollution, 1991, 56(1): 77-82. |
65 | PAK K R, BARTHA R. Mercury methylation and demethylation in anoxic lake sediments and by strictly anaerobic bacteria[J]. Applied and Environmental Microbiology, 1998, 64(3): 1 013-1 017. |
66 | KELLY C A, RUDD J W M, HOLOKA M H. Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling[J]. Environmental Science & Technology, 2003, 37(13): 2 941-2 946. |
67 | GUNDA T, SCANLON T M. Topographical influences on the spatial distribution of soil mercury at the catchment scale[J]. Water, Air, & Soil Pollution, 2013, 224(4): 1-13. |
68 | ZHOU J, WANG Z W, ZHANG X S, et al. Distribution and elevated soil pools of mercury in an acidic subtropical forest of southwestern China[J]. Environmental Pollution, 2015, 202: 187-195. |
69 | BOYD E S, YU R Q, BARKAY T, et al. Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah[J]. Science of the Total Environment, 2017, 581/582: 495-506. |
70 | ACHá D, HINTELMANN H, YEE J. Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region[J]. Chemosphere, 2011, 82(6): 911-916. |
71 | CESáRIO R, MONTEIRO C E, NOGUEIRA M, et al. Mercury and methylmercury dynamics in sediments on a protected area of Tagus Estuary (Portugal)[J]. Water, Air, & Soil Pollution, 2016, 227(12): 1-17. |
72 | FENG S L, AI Z J, ZHENG S M, et al. Effects of dryout and inflow water quality on mercury methylation in a constructed wetland[J]. Water, Air, & Soil Pollution, 2014, 225(4): 1-11. |
73 | GILMOUR C C, HENRY E A. Mercury methylation in aquatic systems affected by acid deposition[J]. Environmental Pollution, 1991, 71(2/3/4): 131-169. |
74 | OREM W, GILMOUR C, AXELRAD D, et al. Sulfur in the south Florida ecosystem: distribution, sources, biogeochemistry, impacts, and management for restoration[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(): 249-288. |
75 | POULIN B A, RYAN J N, TATE M T, et al. Geochemical factors controlling dissolved elemental mercury and methylmercury formation in Alaskan wetlands of varying trophic status[J]. Environmental Science & Technology, 2019, 53(11): 6 203-6 213. |
76 | TJERNGREN I, KARLSSON T, BJ?RN E, et al. Potential Hg methylation and MeHg demethylation rates related to the nutrient status of different boreal wetlands[J]. Biogeochemistry, 2012, 108(1/2/3): 335-350. |
77 | DROTT A, LAMBERTSSON L, BJ?RN E, et al. Do potential methylation rates reflect accumulated methyl mercury in contaminated sediments?[J]. Environmental Science & Technology, 2008, 42(1): 153-158. |
78 | WINDHAM-MYERS L, MARVIN-DIPASQUALE M, KRABBENHOFT D P, et al. Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment[J]. Journal of Geophysical Research: Biogeosciences, 2009, 114(G2). DOI:10.1029/2008JG000815 . |
79 | GRAHAM A M, AIKEN G R, GILMOUR C C. Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions[J]. Environmental Science & Technology, 2012, 46(5): 2 715-2 723. |
80 | SCHAEFER J K, MOREL F M M. High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens[J]. Nature Geoscience, 2009, 2(2): 123-126. |
81 | BOUCHET S, GO?I-URRIZA M, MONPERRUS M, et al. Linking microbial activities and low-molecular-weight thiols to Hg methylation in biofilms and periphyton from high-altitude tropical lakes in the Bolivian Altiplano[J]. Environmental Science & Technology, 2018, 52(17): 9 758-9 767. |
82 | KORTHALS E T, WINFREY M R. Seasonal and spatial variations in mercury methylation and demethylation in an oligotrophic lake[J]. Applied and Environmental Microbiology, 1987, 53(10): 2 397-2 404. |
83 | ULLRICH S M, TANTON T W, ABDRASHITOVA S A. Mercury in the aquatic environment: a review of factors affecting methylation[J]. Critical Reviews in Environmental Science and Technology, 2001, 31(3): 241-293. |
84 | LáZARO W L, GUIMAR?ES J R D, IGNáCIO A R A, et al. Cyanobacteria enhance methylmercury production: a hypothesis tested in the periphyton of two lakes in the Pantanal floodplain, Brazil[J]. Science of the Total Environment, 2013, 456/457: 231-238 |
85 | LECLERC M, PLANAS D, AMYOT M. Relationship between extracellular low-molecular-weight thiols and mercury species in natural lake periphytic biofilms[J]. Environmental Science & Technology, 2015, 49(13): 7 709-7 716. |
86 | BRAVO A G, BOUCHET S, TOLU J, et al. Molecular composition of organic matter controls methylmercury formation in boreal lakes[J]. Nature Communications, 2017, 8. DOI:10.1038/ncomms14255 . |
87 | LINDQVIST O, JOHANSSON K, AASTRUP M, et al. Mercury in the Swedish environment—recent research on causes, consequences and corrective methods[J]. Water, Air, and Soil Pollution, 1991, 55(1/2): xi-xiii. |
88 | CLECKNER L B, GILMOUR C C, HURLEY J P, et al. Mercury methylation in periphyton of the Florida Everglades[J]. Limnology and Oceanography, 1999, 44(7): 1 815-1 825. |
89 | SHEN Ge, XU Bin, JIN Yunxiang, et al. Advances in studies of wetlands in zoige plateau[J]. Geography and Geo-Information Science, 2016, 32(4): 76-82, 89. |
89 | 申格, 徐斌, 金云翔, 等.若尔盖高原湿地研究进展[J].地理与地理信息科学, 2016, 32(4): 76-82, 89. |
90 | ROTH S, POULIN B A, BAUMANN Z, et al. Nutrient inputs stimulate mercury methylation by syntrophs in a subarctic peatland[J]. Frontiers in Microbiology, 2021, 12. DOI:10.3389/fmicb.2021.741523 . |
91 | ZHANG L J, PHILBEN M, TAS N, et al. Unravelling biogeochemical drivers of methylmercury production in an Arctic Fen soil and a bog soil[J]. Environmental Pollution (Barking, Essex: 1987), 2022, 299. DOI:10.1016/j.envpol.2022.118878 . |
92 | BILODEAU F, SCHETAGNE R, THERRIEN J, et al. Absence of noticeable mercury effects on fish populations in boreal reservoirs despite threefold to sevenfold increases in mercury concentrations[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73(7): 1 104-1 125. |
93 | SILVERTHORN V M, BISHOP C A, JARDINE T, et al. Impact of flow diversion by run-of-river Dams on American dipper diet and mercury exposure[J]. Environmental Toxicology and Chemistry, 2018, 37(2): 411-426. |
94 | LECLERC M, HARRISON M C, STORCK V, et al. Microbial diversity and mercury methylation activity in periphytic biofilms at a Run-of-river hydroelectric dam and constructed wetlands[J]. mSphere, 2021, 6(2). DOI:10.1128/mSphere.00021-21 . |
95 | FENG P Y, XIANG Y P, CAO D, et al. Occurrence of methylmercury in aerobic environments: evidence of mercury bacterial methylation based on simulation experiments[J]. SSRN Electronic Journal, 2022. DOI:10.2139/ssrn.4093950 . |
96 | WANG Y M, YIN D L, XIANG Y P, et al. A review of studies on the biogeochemical behaviors of mercury in the Three Gorges Reservoir, China[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(5): 686-694. |
97 | ZHAO J Y, YE Z H, ZHONG H. Rice root exudates affect microbial methylmercury production in paddy soils[J]. Environmental Pollution, 2018, 242: 1 921-1 929. |
98 | GONG Y, NUNES L M, GREENFIELD B K, et al. Bioaccessibility-corrected risk assessment of urban dietary methylmercury exposure via fish and rice consumption in China[J]. Science of the Total Environment, 2018, 630: 222-230. |
99 | ZHANG H, FENG X B, LARSSEN T, et al. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure[J]. Environmental Health Perspectives, 2010, 118(9): 1 183-1 188. |
100 | WANG X, YE Z H, LI B, et al. Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg[J]. Environmental Science & Technology, 2014, 48(3): 1 878-1 885. |
101 | TANG W L, SU Y, GAO Y X, et al. Effects of farming activities on the biogeochemistry of mercury in rice-paddy soil systems[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(5): 635-642. |
102 | PENG X Y, LIU F J, WANG W X, et al. Reducing total mercury and methylmercury accumulation in rice grains through water management and deliberate selection of rice cultivars[J]. Environmental Pollution, 2012, 162: 202-208. |
103 | ROTHENBERG S E, ANDERS M, AJAMI N J, et al. Water management impacts rice methylmercury and the soil microbiome[J]. Science of the Total Environment, 2016, 572: 608-617. |
104 | XING Y, WANG J X, KINDER C E S, et al. Rice hull biochar enhances the mobilization and methylation of mercury in a soil under changing redox conditions: implication for Hg risks management in paddy fields[J]. Environment International, 2022, 168. DOI:10.1016/j.envint.2022.107484 . |
105 | ZHU H K, ZHONG H, WU J L. Incorporating rice residues into paddy soils affects methylmercury accumulation in rice[J]. Chemosphere, 2016, 152: 259-264. |
106 | ACHá D, I?IGUEZ V, ROULET M, et al. Sulfate-reducing bacteria in floating macrophyte rhizospheres from an Amazonian floodplain lake in Bolivia and their association with Hg methylation[J]. Applied and Environmental Microbiology, 2005, 71: 7 531-7 535. |
107 | POULAIN A J, BARKAY T. Cracking the mercury methylation code[J]. Science, 2013, 339: 1 280-1 281. |
108 | SCHAEFER J K, KRONBERG R M, MOREL F M M, et al. Detection of a key Hg methylation gene, hgcA, in wetland soils[J]. Environmental Microbiology Reports, 2014, 6(5): 441-447. |
109 | JONES D S, JOHNSON N W, MITCHELL C P J, et al. Diverse communities of hgcAB (+) microorganisms methylate mercury in freshwater sediments subjected to experimental sulfate loading[J]. Environmental Science & Technology, 2020. DOI:10.1021/acs.est.0c02513 . |
110 | STRICKMAN R J S, FULTHORPE R R, COLEMAN WASIK J K, et al. Experimental sulfate amendment alters peatland bacterial community structure[J]. Science of the Total Environment, 2016, 566/567: 1 289-1 296. |
111 | GRAHAM E B, GABOR R S, SCHOOLER S, et al. Oligotrophic wetland sediments susceptible to shifts in microbiomes and mercury cycling with dissolved organic matter addition[J]. PeerJ, 2018, 6. DOI:10.7717/peerj.4575 . |
112 | YU R Q, REINFELDER J R, HINES M E, et al. Syntrophic pathways for microbial mercury methylation[J]. ISME Journal, 2018, 12(7): 1 826-1 835. |
113 | BAE H S, DIERBERG F E, OGRAM A. Periphyton and flocculent materials are important ecological compartments supporting abundant and diverse mercury methylator assemblages in the Florida Everglades[J]. Applied and Environmental Microbiology, 2019, 85(13): e00156-e00119. |
114 | LIU Na. Characterization and identification of SRB and its control method[D]. Wuhan: Huazhong University of Science and Technology, 2012. |
114 | 刘娜. 硫酸盐还原菌的分类鉴定及抑制规律研究[D]. 武汉: 华中科技大学, 2012. |
115 | CHEN Jie, CHU Yin, SI Youbin. Dissimilatory Fe(Ⅲ) reduction by Shewanclla oneidensis MR-1 and impact factors[J]. Journal of Anhui Agricultural University, 2011, 38(4):554-558. |
115 | 陈洁, 储茵, 司友斌. 奥奈达希瓦氏菌MR-1的Fe(Ⅲ)还原特性及其影响因素[J].安徽农业大学学报, 2011, 38(4):554-558. |
116 | ZHU W, SONG Y, ADEDIRAN G A, et al. Mercury transformations in resuspended contaminated sediment controlled by redox conditions, chemical speciation and sources of organic matter[J]. Geochimica et Cosmochimica Acta,2018, 220: 158-179. |
117 | ZHANG H X, HUO S, YEAGER K M, et al. A historical sedimentary record of mercury in a shallow eutrophic lake: impacts of human activities and climate change[J]. Engineering, 2019, 52: 296-304. |
118 | FRANCO M W, MENDES L A, WINDM?LLER C C, et al. Mercury methylation capacity and removal of Hg species from aqueous medium by cyanobacteria[J]. Water, Air, & Soil Pollution, 2018, 229(4): 1-12. |
119 | NOH S, KIM C K, KIM Y, et al. Assessing correlations between monomethylmercury accumulation in fish and trophic states of artificial temperate reservoirs[J]. Science of the Total Environment, 2017, 580: 912-919. |
120 | SOERENSEN A L, SCHARTUP A T, GUSTAFSSON E, et al. Eutrophication increases phytoplankton methylmercury concentrations in a coastal sea—a Baltic Sea case study[J].Environmental Science & Technology, 2016, 50(21): 11 787-11 796. |
121 | ZHAO Q X, WANG J T, OUYANG S Y, et al. The exacerbation of mercury methylation by Geobacter sulfurreducens PCA in a freshwater algae-bacteria symbiotic system throughout the lifetime of algae[J]. Journal of Hazardous Materials, 2021, 415: 125 691.1-125 691.9. |
122 | LEI P, NUNES L M, LIU Y R, et al. Mechanisms of algal biomass input enhanced microbial Hg methylation in lake sediments[J]. Environment International, 2019, 126: 279-288. |
123 | GARCIA-CALLEJA J, COSSART T, PEDRERO Z, et al. Determination of the intracellular complexation of inorganic and methylmercury in Cyanobacterium Synechocystis sp. PCC 6803[J]. Environmental Science & Technology, 2021, 55(20): 13 971-13 979. |
124 | LEI P, ZHANG J, ZHU J J, et al. Algal organic matter drives methanogen-mediated methylmercury production in water from eutrophic shallow lakes[J]. Environmental Science & Technology, 2021, 55(15): 10 811-10 820. |
125 | ALANOCA L, AMOUROUX D, MONPERRUS M, et al. Diurnal variability and biogeochemical reactivity of mercury species in an extreme high-altitude lake ecosystem of the Bolivian Altiplano[J]. Environmental Science and Pollution Research, 2016, 23(7): 6 919-6 933. |
126 | GAISER E E, MCCORMICK P V, HAGERTHEY S E, et al. Landscape patterns of periphyton in the Florida Everglades[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(): 92-120. |
127 | SANLI K, BENGTSSON-PALME J, NILSSON R H, et al. Metagenomic sequencing of marine periphyton: taxonomic and functional insights into biofilm communities[J]. Frontiers in Microbiology, 2015,6. DOI:10.3389/fmicb.2015.01192 . |
128 | RAMANAN R, KIM B H, CHO D H, et al. Algae-bacteria interactions: evolution, ecology and emerging applications[J]. Biotechnology Advances, 2016, 34(1): 14-29. |
129 | OLSEN T A, BRANDT C C, BROOKS S C. Periphyton biofilms influence net methylmercury production in an industrially contaminated system[J]. Environmental Science & Technology, 2016, 50(20): 10 843-10 850. |
130 | LáZARO W L, DíEZ S, da SILVA C J, et al. Seasonal changes in peryphytic microbial metabolism determining mercury methylation in a tropical wetland[J]. Science of the Total Environment, 2018, 627: 1 345-1 352. |
131 | CARRELL A A, SCHWARTZ G E, CREGGER M A, et al. Nutrient exposure alters microbial composition, structure, and mercury methylating activity in periphyton in a contaminated watershed[J]. Frontiers in Microbiology,2021,12. DOI:10.3389/fmicb.2021.647861 . |
132 | MANGAL V, PHUNG T, NGUYEN T Q, et al. Molecular characterization of mercury binding ligands released by freshwater algae grown at three photoperiods[J]. Frontiers in Environmental Science, 2019,6. DOI:10.3389/fenvs.2018.00155 . |
133 | BRANFIREUN B A, COSIO C, POULAIN A J, et al. Mercury cycling in freshwater systems—an updated conceptual model[J]. The Science of the Total Environment, 2020, 745. DOI:10.1016/j.scitotenv.2020.140906 . |
134 | SIEBER J R, MCINERNEY M J, GUNSALUS R P. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation [M]. Paloalto:Annual Reviews, 2012. |
135 | GROSSKOPF T, ZENOBI S, ALSTON M, et al. A stable genetic polymorphism underpinning microbial syntrophy[J]. ISME Journal, 2016, 10(12): 2 844-2 853. |
136 | LIU Y R, DONG J X, ZHANG Q G, et al. Longitudinal occurrence of methylmercury in terrestrial ecosystems of the Tibetan Plateau[J]. Environmental Pollution, 2016, 218: 1 342-1 349. |
137 | MA M, DU H X, WANG D Y, et al. Biotically mediated mercury methylation in the soils and sediments of Nam Co Lake, Tibetan Plateau[J]. Environmental Pollution, 2017, 227: 243-251. |
/
〈 |
|
〉 |