Research Progress on the Dynamics of the Deep-sea Bottom Boundary Layer and Its Sedimentation Effect
Received date: 2022-06-20
Revised date: 2022-11-10
Online published: 2023-02-02
Supported by
the National Natural Science Foundation of China “High-resolution mooring observation on vertical structure of typhoon-triggered deep-sea turbidity currents”(41876048);“Deep-sea sedimentation process and mechanism in the South China Sea”(91528304)
The dynamics of the deep-sea Bottom Boundary Layer (BBL) directly control the deep-sea sedimentation process, making it the most important energy and material exchange layer in deep-sea science. According to existing sporadic observations, BBL dynamics controlled by multi-scale motions in the ocean differ greatly from current theories, and there remains a lack of systematic quantitative studies on the deep-sea sedimentation process influenced by BBL dynamics. Based on the theoretical framework, sporadic in-situ observations, and numerical and laboratory research, the following points are reviewed and summarized herein:
Danni Lü , Yanwei ZHANG , Zhifei LIU , Yulong ZHAO , Weihan RUAN . Research Progress on the Dynamics of the Deep-sea Bottom Boundary Layer and Its Sedimentation Effect[J]. Advances in Earth Science, 2023 , 38(1) : 32 -43 . DOI: 10.11867/j.issn.1001-8166.2022.100
1 | MCCAVE I N. The benthic boundary layer [M]. New York and London: Springer U.S., 1976. |
2 | WANG Pinxian, JIAN Zhimin. Exploring the deep South China Sea: retrospects and prospects [J]. Science China: Earth Sciences, 2019, 49(10): 1 590-1 606. |
2 | 汪品先, 翦知湣. 探索南海深部的回顾与展望[J]. 中国科学: 地球科学, 2019, 49(10): 1 590-1 606. |
3 | LIU Z F, ZHAO Y L, COLIN C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238-273. |
4 | HüNEKE H, MULDER T. Deep-sea sediments [M]. Amsterdam: Elsevier, 2014. |
5 | GEYER W R, MACCREADY P. The estuarine circulation[J]. Annual Review of Fluid Mechanics, 2014, 46: 175-197. |
6 | TROWBRIDGE J H, LENTZ S J. The bottom boundary layer[J]. Annual Review of Marine Science, 2018, 10: 397-420. |
7 | DANOVARO R, CORINALDESI C, DELL’ ANNO A, et al. The deep-sea under global change[J]. Current Biology, 2017, 27(11). DOI:10.1016/j.cub.2017.02.046 . |
8 | HOLLISTER C D. HEBBLE epilogue[J]. Marine Geology, 1991, 99(3/4): 445-460. |
9 | AGHSAEE P, BOEGMAN L. Experimental investigation of sediment resuspension beneath internal solitary waves of depression[J]. Journal of Geophysical Research: Oceans, 2015, 120(5): 3 301-3 314. |
10 | MELLOR G L, YAMADA T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20(4): 851-875. |
11 | MCLEAN S R. Theoretical modelling of deep ocean sediment transport[J]. Marine Geology, 1985, 66(1/2/3/4): 243-265. |
12 | WANG Pinxian. Decadal survey in the South China Sea: prospects of deep-sea technologies[J]. Science and Technology Foresight, 2022, 1(2): 9-19. |
12 | 汪品先. 从南海10年展望深海科技前景[J]. 前瞻科技, 2022, 1(2): 9-19. |
13 | BOWDEN K F. Physical problems of the benthic boundary layer[J]. Geophysical Surveys, 1978, 3(3): 255-296. |
14 | ALI A, LEMCKERT C J. A traversing system to measure bottom boundary layer hydraulic properties[J]. Estuarine, Coastal and Shelf Science, 2009, 83(4): 425-433. |
15 | FALLER A J, KAYLOR R E. A numerical study of the instability of the laminar ekman boundary layer[J]. Journal of the Atmospheric Sciences, 1966, 23(5): 466-480. |
16 | ZHANG Wenyuan. Bottom boundary layer[M]// Encyclopedia of marine science, Amsterdam: Springer Netherlands, 2014. |
17 | SALON S, CRISE A, van LOON A J. Dynamics of the Bottom Boundary Layer[M]// REBESCO M, CAMERLENGHI A. Developments in Sedimentology. Oxford: Elsevier, 2008. |
18 | LUECK R S T, LAURENT L, MOUM J N. Turbulence in the Benthic Boundary Layer[M]// COCHRAN J K, BOKUNIEWICZ H, YAGER P, et al. Encyclopedia of ocean sciences (third edition). Oxford: Academic Press, 2019. |
19 | WEN Mingzheng, SHAN Hongxian, ZHANG Shaotong, et al. Resuspension of sediments along the bottom boundary layer: a review[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 177-188. |
19 | 文明征, 单红仙, 张少同, 等. 海底边界层沉积物再悬浮的研究进展[J]. 海洋地质与第四纪地质, 2016, 36(1): 177-188. |
20 | LOZOVATSKY I D, SHAPOVALOV S M. Thickness of the mixed bottom layer in the Northern Atlantic[J]. Oceanology, 2012, 52(4): 447-452. |
21 | PERLIN A, MOUM J N, KLYMAK J M, et al. Organization of stratification, turbulence, and veering in bottom Ekman layers[J]. Journal of Geophysical Research: Oceans, 2007, 112(C5). DOI:10.1029/2004JC002641 . |
22 | MCCAVE I N. Nepheloid Layers[M]// COCHRAN J K, BOKUNIEWICZ H, YAGER P. Encyclopedia of ocean sciences (third edition), Oxford: Academic Press, 2019. |
23 | STAHR F R. Transport and bottom boundary layerobservations of the North Atlantic Deep Western Boundary Current at the Blake Outer Ridge[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1999, 46(1/2): 205-243. |
24 | ARMI L, MILLARD Jr R C. The bottom boundary layer of the deep ocean[J]. Journal of Geophysical Research, 1976, 81(27): 4 983-4 990. |
25 | JIANG Donghui, GAO Shu. Recent progress in sediment transport research for marine environments[J]. Advances in Earth Science, 2003, 18(1): 100-108. |
25 | 蒋东辉, 高抒. 海洋环境沉积物输运研究进展[J]. 地球科学进展, 2003, 18(1): 100-108. |
26 | THEODORSEN T. Mechanism of turbulence[C]// Proceedings of the 2nd midwestern conference on fluid mechanics, columbus, 1952:1-19. |
27 | GORDON C M. Intermittent momentum transport in a geophysical boundary layer[J]. Nature, 1974, 248(5 447): 392-394. |
28 | HEATHERSHAW A D. “Bursting” phenomena in the sea[J]. Nature, 1974, 248(5 447): 394-395. |
29 | EITEL-AMOR G, ?RLü R, SCHLATTER P, et al. Hairpin vortices in turbulent boundary layers[J]. Physics of Fluids, 2015, 27(2). DOI:10.1063/1.4907783 . |
30 | RASHIDI M. Particle-turbulence interaction in a boundary layer[J]. International Journal of Multiphase Flow, 1990, 16(6): 935-949. |
31 | MCCAVE I N. Sedimentary processes deposition from suspension[M]// Encyclopedia of geology. Amsterdam: Elsevier, 2005: 8-17. |
32 | WEATHERLY G L, BLUMSACK S L, BIRD A A. On the effect of diurnal tidal currents in determining the thickness of the turbulent ekman bottom boundary layer[J]. Journal of Physical Oceanography, 1980, 10(2): 297-300. |
33 | SAKAMOTO K. Instabilities of the tidally induced bottom boundary layer in the rotating frame and their mixing effect[J]. Dynamics of Atmospheres and Oceans, 2006, 41(3/4): 191-211. |
34 | SAKAMOTO K, AKITOMO K. The tidally induced bottom boundary layer in a rotating frame: similarity of turbulence[J]. Journal of Fluid Mechanics, 2008, 615: 1-25. |
35 | SAKAMOTO K, AKITOMO K. The tidally induced bottom boundary layer in the rotating frame: development of the turbulent mixed layer under stratification[J]. Journal of Fluid Mechanics, 2009, 619: 235-259. |
36 | TURNEWITSCH R, DALE A, LAHAJNAR N, et al. Can neap-spring tidal cycles modulate biogeochemical fluxes in the abyssal near-seafloor water column?[J]. Progress in Oceanography, 2017, 154: 1-24. DOI:10.1016/j.pocean.2017.04.006 . |
37 | ENDOH T. Observational evidence for tidal straining over a sloping continental shelf[J]. Continental Shelf Research, 2016, 117: 12-19. |
38 | SCHULZ K, UMLAUF L. Residual transport of suspended material by tidal straining near sloping topography[J]. Journal of Physical Oceanography, 2016, 46: 2 083-2 102. |
39 | THOMSEN L. Processes in the benthic boundary layer at the Iberian continental margin and their implication for carbon mineralization[J]. Progress in Oceanography, 2002, 52(2/3/4): 315-329. |
40 | WANG Haonan, JIA Yonggang, JI Chunsheng, et al. Internal tide-induced turbulent mixing and suspended sediment transport at the bottom boundary layer of the South China Sea slope[J]. Journal of Marine Systems, 2022, 230. DOI:10.1016/j.jmarsys.2022.103723 . |
41 | GAYEN B, SARKAR S. Turbulence during the generation of internal tide on a critical slope[J]. Physical Review Letters, 2010, 104(21). DOI:10.1103/PhysRevLett.104.218502 . |
42 | GAYEN B, SARKAR S. Direct and large-eddy simulations of internal tide generation at a near-critical slope[J]. Journal of Fluid Mechanics, 2011, 681: 48-79. |
43 | XIE X H, LIU Q, ZHAO Z X, et al. Deep Sea Currents driven by breaking internal tides on the continental slope[J]. Geophysical Research Letters, 2018, 45(12): 6 160-6 166. |
44 | GARRETT C. The role of secondary circulation in boundary mixing[J]. Journal of Geophysical Research: Oceans, 1990, 95(C3): 3 181-3 188. |
45 | MCPHEE-SHAW E. Boundary-interior exchange: reviewing the idea that internal-wave mixing enhances lateral dispersal near continental margins[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2006, 53(1/2): 42-59. |
46 | HAREN H V, CHI W C, YANG C F, et al. Deep Sea floor observations of typhoon driven enhanced ocean turbulence[J]. Progress in Oceanography, 2020, 184. DOI:10.1016/j.pocean.2020.102315 . |
47 | ZHANG Y W, LIU Z F, ZHAO Y L, et al. Effect of surface mesoscale eddies on deep-sea currents and mixing in the northeastern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 6-14. |
48 | JIA Y G, TIAN Z C, SHI X F, et al. Deep-sea sediment resuspension by internal solitary waves in the northern South China Sea[J]. Scientific Reports, 2019, 9(1). DOI:10.1016/j.pocean.2020.102315 . |
49 | BOEGMAN L, STASTNA M. Sediment resuspension and transport by internal solitary waves[J]. Annual Review of Fluid Mechanics, 2019. DOI: 10.1146/annurev-fluid-122316-045049 . |
50 | BOEGMAN L, IVEY G N. Flow separation and resuspension beneath shoaling nonlinear internal waves[J]. Journal of Geophysical Research: Oceans, 2009, 114(C2). DOI:10.1029/2007JC004411 . |
51 | ZHANG Zhengguang. Mesoscale eddy[D]. Qingdao: Ocean University of China, 2014. |
51 | 张正光. 中尺度涡[D]. 青岛: 中国海洋大学, 2014. |
52 | ZHENG Quanan, XIE Lingling, ZHENG Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131-158. |
52 | 郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131-158. |
53 | ZHANG Z W, ZHAO W, TIAN J W, et al. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation[J]. Journal of Geophysical Research: Oceans, 2013, 118(12): 6 479-6 494. |
54 | ZHANG Z, TIAN J, QIU B, et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea [J]. Scientific Reports, 2016, 6. DOI:10.1038/srep24349 . |
55 | LI D W, WEI Z X, WANG Y G, et al. Characteristics and temporal variations of near-bottom currents near the Dongsha Island in the northern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(4): 80-89. |
56 | PEGGION G. The effect of the benthic boundary layer on the physics of intense mesoscale eddies [D]. Gainesville: The Florida State University, 1985. |
57 | PEGGION G. On the interaction of the bottom boundary layer and deep rings[J]. Marine Geology, 1991, 99(3/4): 329-342. |
58 | THORPE S A. The dynamics of the boundary layers of the deep ocean[J]. Science Progress, 1988, 72(2 286): 189-206. |
59 | ARMI L, D’ASARO E. Flow structures of the benthic ocean[J]. Journal of Geophysical Research: Oceans, 1980, 85(C1): 469-484. |
60 | D’ASARO E. Velocity structure of the benthic ocean[J]. Journal of Physical Oceanography, 1982, 12(4): 313-322. |
61 | WASHBURN L, SWENSON M S, LARGIER J L, et al. Cross-shelf sediment transport by an anticyclonic eddy off northern California[J]. Science, 1993, 261(5 128): 1 560-1 564. |
62 | ZHANG Y W, LIU Z F, ZHAO Y L, et al. Mesoscale eddies transport deep-sea sediments[J]. Scientific Reports, 2014, 4. DOI:10.1038/srep05937 . |
63 | CHEN Hui, ZHANG Wenyan, XIE Xinong, et al. Sediment dynamics driven by contour currents and mesoscale eddies along continental slope: a case study of the northern South China Sea[J]. Marine Geology, 2019, 409: 48-66. |
64 | KELLEY E A, WEATHERLY G L, EVANS J C. Correlation between surface gulf stream and bottom flow new 5000 meters depth[J]. Journal of Physical Oceanography, 1982, 12(10): 1 150-1 153. |
65 | KELLEY E A, WEATHERLY G L. Abyssal eddies near the gulf stream[J]. Journal of Geophysical Research: Oceans, 1985, 90(C2): 3 151-3 159. |
66 | GRANT W D III. A description of the bottom boundary layer at the HEBBLE site: low-frequency forcing, bottom stress and temperature structure[J]. Marine Geology, 1985, 66(1/2/3/4): 219-241. |
67 | RICHARDSON M J, WIMBUSH M, MAYER L. Exceptionally strong near-bottom flows on the continental rise of nova Scotia [J]. Science, 1981, 213(4 510): 887-888. |
68 | WEATHERLY G L. An estimate of bottom frictional dissipation by Gulf Stream fluctuations[J]. Journal of Marine Research, 1984, 42(2): 289-301. |
69 | GARDNER W D, TUCHOLKE B E, RICHARDSON M J, et al. Benthic storms, nepheloid layers, and linkage with upper ocean dynamics in the western North Atlantic[J]. Marine Geology, 2017, 385: 304-327. |
70 | SPINRAD R W, ZANEVELD J R V. An analysis of the optical features of the near-bottom and bottom nepheloid layers in the area of the Scotian Rise[J]. Journal of Geophysical Research: Oceans, 1982, 87(C12): 9 553-9 561. |
71 | WEATHERLY G L. Storms and flow reversals at the HEBBLE site[J]. Marine Geology, 1985, 66(1/2/3/4): 205-218. |
72 | GROSS T F III. Characterization of deep-sea storms[J]. Marine Geology, 1991, 99(3/4): 281-301. |
73 | van WEERING T C E. Benthic processes and dynamics at the NW Iberian margin: an introduction[J]. Progress in Oceanography, 2002, 52(2/3/4): 123-128. |
74 | VITORINO J. Winter dynamics on the northern Portuguese shelf. Part 2: bottom boundary layers and sediment dispersal[J]. Progress in Oceanography, 2002, 52(2/3/4): 155-170. |
75 | THOMSEN L. Spatial and temporal variability of particulate matter in the benthic boundary layer at the N.W. European Continental Margin (Goban Spur)[J]. Progress in Oceanography, 1998, 42(1/2/3/4): 61-76. |
76 | SMITH JR K L. Long time-series monitoring of an abyssal site in the NE Pacific: an introduction[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1998, 45(4/5): 573-586. |
77 | CONNOLLY T P, MCGILL P R, HENTHORN R G, et al. Near-bottom Currents at station M in the abyssal northeast Pacific[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2020, 173. DOI:10.1016/j.dsr2.2020.104743 . |
78 | BEAULIEU S. Temporal variability in currents and the benthic boundary layer at an abyssal station off central California[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1998, 45(4/5): 587-615. |
79 | KLEIN H. Near-bottom Currents and bottom boundary layer variability over manganese nodule fields in the Peru basin, se-Pacific[J]. Deutsche Hydrografische Zeitschrift, 1996, 48(2): 147-160. |
80 | ZHAO Jiuqiang, ZHANG Yanwei, LIU Zhifei, et al. Seasonal variability of tides in the deep northern South China Sea[J]. Science China: Earth Sciences, 2019, 49(4): 717-730. |
80 | 赵玖强, 张艳伟, 刘志飞, 等. 南海北部深海潮汐的季节性变化特征[J]. 中国科学: 地球科学, 2019, 49(4): 717-730. |
81 | ALFORD M H, PEACOCK T, MACKINNON J A, et al. The formation and fate of internal waves in the South China Sea[J]. Nature, 2015, 521(7 550): 65-69. |
82 | QUAN Q, CAI Z Y, JIN G, et al. Topographic rossby waves in the abyssal South China Sea[J]. Journal of Physical Oceanography, 2021. DOI: 10.1175/JPO-D-20-0187.1 . |
83 | DING Zhongjun, LIAO Yulei, REN Yugang. Research on the technological development of deep sea observation and monitoring equipment [M]. Harbin: Harbin Engineering University Press, 2020. |
83 | 丁忠军, 廖煜雷, 任玉刚. 深海观测监测装备技术发展研究[M]. 哈尔滨: 哈尔滨工程大学出版社, 2020. |
84 | JI Chunsheng, JIA Yonggang, ZHU Junjiang, et al. R & D and application of the Abyssal Bottom Boundary Layer Observation System(ABBLOS)[J]. Earth Science Frontiers, 2022, 29(5): 265-274. |
84 | 季春生, 贾永刚, 朱俊江, 等. 深海海底边界层原位观测系统研发与应用[J]. 地学前缘, 2022, 29(5): 265-274. |
85 | LI Jianru, XU Jingping, LIU Zhifei. Applications of tripods to deep-sea observation[J]. Advances in Earth Science, 2013, 28(5): 559-565. |
85 | 李建如, 徐景平, 刘志飞. 底基三脚架在深海观测中的应用[J]. 地球科学进展, 2013, 28(5): 559-565. |
/
〈 |
|
〉 |