ADVANCE IN THE EXPERIMENTAL STUDY OF VAPORTRANSPORT OF ORE METALS
The idea that vapor phase can transport metals was mentioned in 1644, but the research is very weak because of the lack of enough recognition and new microanalysis techniques and so on. In this paper, we review some recent experimental study and geologic evidence on the vapor transport of ore metals. It should be pointed out that vapor transport of ore metals relies on the interactions between metals and gas-solvent forming (chloride) hydrate of metals that enhance the solubility of metals in vapor phase, not totally due to the volatility of metals. So it is very important to continue the study of vapor transport of ore metals, especially weakly volatile elements. With the further study and the accumulation of base data, more attention will be paid to the important role of vapor transport of ore metals on the formation of ore deposits.
Key words: Metal elements; Vapor transport; Experimental study
SHANG Linbo, HU Ruizhong, FAN Wenling . ADVANCE IN THE EXPERIMENTAL STUDY OF VAPORTRANSPORT OF ORE METALS[J]. Advances in Earth Science, 2004 , 19(2) : 245 -249 . DOI: 10.11867/j.issn.1001-8166.2004.02.0245
[1] WilliamsJones A E, Migdisov Art A, Archibald A M, et al. Vaportransport of ore metals[J]. WaterRock Interactions, Ore Deposits, and Envrionmental Geochemistry, 2002, 7: 279-305.
[2] Barnes H L. Geochemistry of Hydrothermal Ore Deposits (3rd)[M]. New York: Jonh Wiley and Sons, 1997.
[3] Quisefit J P, Toutain J P, Bergametti G, et al. Evolution versus cooling of gaseous volcanic emissions from Momotombo Volcano, Nicaragua: Thermochemical model and observations[J]. Geochimica et Cosmochimica Acta, 1989, 53: 2 591-2 608.
[4] Toutain J P, Aloupogiannis P, Delorme H, et al. Vapor deposition of trace elements from degassed basaltic Lava, Piton de la Fournaise volcano, Reunion Island[J]. Journal of Volcanology and Geothermal Research, 1990, 40: 257-268.
[5] Le Guern F, Bernard A. A new method for sampling and analyzing sublimates: Application to Merapi Volcano, Java[J]. Journal of Volcanology and Geothermal Research, 1982, 12: 133-146.
[6] Kavalieris I. High Au, Ag, Mo, Pb, V, and W content of fumarole deposites at Merapi volcano, central Java, Indonesia[J].Journal of Geochemical Exploration, 1994, 50: 479-491.
[7] Korzhinsky M A, Tkachenko S I, Schmulovich K L, et al. Discovery of a pure rhenium mineral at Kudriay volcano[J]. Nature,1994,369:51-52.
[8] Taran Y A, Bernard A, Gavilanes JC, et al. Native gold in mineral precipitates from high temperature volcanic gases of Colima volcano, Mexico[J]. Applied Geochemistry, 2000, 15: 337-346.
[9]Chen Tianhu(陈天虎), Yue Shucang(岳书仓). Role of gaseous phase in the formationg of hydrothermal ore deposits[J]. Journal of Hefei University of Technology(合肥工业大学学报·自然科学版), 2001, 24(4): 470-476(in Chinese).
[10] Heinrich C H, Ryan C G, Mernagh T P, et al. Segregation of Ore Metals between Magmatic brine and vapor: A fluid inclusion study using PIXE microanalysis[J]. Economic Geology, 1992, 87:1 566-1 583.
[11] Lowenstern J B, Mahood G A, Rivers M L, et al. Evidence for extreme partitioning of copper into a magmatic vapor phase[J]. Science, 1991, 252(7): 1 405-1 409.
[12] Ulrich T, Günther D, Heinrich C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J]. Nature, 1999, 399(17): 676-679.
[13] Heinrich C A, Günther D, Audétat A. Metal fractionation between magmatic brine and vapor, determinded by microanalysis of fluid inclusion[J]. Geology, 1999, 87: 755-758.
[14] Audētat A, Günther D, Heinrich C A. Causes for largescale zonation around mineralized plutons: Fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia[J]. Economic Geology, 2000, 95(8): 1 563-1 581.
[15] Ronghua Zhang, Shumi Hu. A case study of the influx of upper mantle fluids into the crust [J]. Journal of Volcanology and Geothermal Research, 2002, 118: 319-338.
[16] Wahrenberger C, Seward T M, Dietrich V. Volatile trace-element transport in high-temperature gases from Kudriavy volcano (Iturup. Kurile Islands, Russia)[J]. WaterRock Interactions, Ore Deposits and Environmental Geochemistry, 2002, 7: 307-327.
[17] Pokrovski G B, Zakirov I V, Roux J, et al. Experimental study of arsenic speciation in vapor phase to 500℃: Implications for As transport and fractionation in low-density crustal fluids and volcanic gases[J]. Geochimica et Cosmochimica Acta, 2002, 66(19): 3 453-3 480.
[18] Migdisov Art A, Suleimenov O M, Alekhin Yu V. Experimental study of polysulfane stability in gaseous hydrogen sulfide[J]. Geochimica et Cosmochimica Acta, 1998, 62(15): 2 627-2 635.
[19] ZakaznovaIakovleva V P, Migdisov Art A, Suleimenov O M, et al. An experimental study of stibnite solubility in gaesous hydrogen sulphside from 200 to 320℃[J]. Geochimica et Cosmochimica Acta, 2001, 65(2): 289-298.
[20] Archibald S M, Migdisov Art A, WilliamsJones A E. The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures[J]. Geochimica et Cosmochimica Acta, 2001, 65(23):4 413-4 423.
[21] Archibald S M, Migdisov Art A, WilliamsJones A E. An experimental study of the stability of copper chloride complexes in water vapor at elevated temperatures and pressures[J]. Geochimica et Cosmochimica Acta, 2002, 66(9):1 611-1 619.
[22] Migdisov Art A, WilliamsJones A E, Suleimenov O M. solubility of chlorargyrite (AgCl) in the water vapor at elevated temperature and pressures[J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3 817-3 827.
[23] Hashimoto A. The effect of H2O gas on volatilities of planetforming major elements: Ⅰ. Experimental determination of thermodynamic properties of Ca-, Al- and Si-hydroxide gas molecules and its application to the solar nebula[J]. Geochimica et Cosmochimica Acta, 1992, 56: 511-532.
[24] Gemmell J B. Geochemistry of metallic trace elements in fumarole condenstates from Nicaraguan and Costa Rican volcanoes[J]. Journal of Volcanology and Geothermal Research, 1987,33: 161-181.
/
〈 |
|
〉 |