Sources of Foraminiferal Neodymium Isotopes: Implications for Paleoceanography
Received date: 2022-10-08
Revised date: 2022-10-19
Online published: 2022-11-16
Supported by
the National Natural Science Foundation of China “Assessment of foraminiferal Neodymium behavior in the central-northern South China Sea and its implications for past deep-waters hydrology studies”(42176058)
Foraminiferal neodymium (Nd) isotopes are powerful proxies for reconstructing past deep-water currents. Nd isotopes were differentially enriched in foraminiferal calcite and associated authigenic phases (i.e., Fe-Mn oxides). The Nd concentration in the authigenic phases was higher than that in foraminiferal calcite, indicating that authigenic phases are the main carriers of foraminiferal Nd. Authigenic phases associated with foraminifera are generally formed at the seawater-sediment interface, from where they begin to adsorb Nd from the bottom water. During the diagenesis of sediments, the redox state of the sedimentary environment can be changed, resulting in the release and re-adsorption cycling of Nd isotopes in authigenic phases and the exchange with pore fluids, which further impacts the bottom water Nd isotope record in foraminiferal authigenic phases. Therefore, when using foraminiferal Nd isotopes to trace past bottom-water mixing, it is necessary to analyze the evolution of parallel rare earth elements and Nd isotopes extracted from foraminifera and detrital fractions to eliminate the influence of diagenesis on foraminiferal Nd isotopes.
Key words: Foraminifera; Neodymium isotopes; Paleoceanography.
Qiong WU , Zhifei LIU , Ruifang MA . Sources of Foraminiferal Neodymium Isotopes: Implications for Paleoceanography[J]. Advances in Earth Science, 2022 , 37(11) : 1194 -1203 . DOI: 10.11867/j.issn.1001-8166.2022.087
1 | BROECKER W S, DENTON G H. The role of ocean-atmosphere reorganizations in glacial cycles[J]. Geochimica et Cosmochimica Acta, 1989, 53(10): 2 465-2 501. |
2 | CLARK P U, PISIAS N G, STOCKER T F, et al. The role of the thermohaline circulation in abrupt climate change[J]. Nature, 2002, 415(6 874): 863-869. |
3 | RAHMSTORF S. Ocean circulation and climate during the past 120, 000 years[J]. Nature, 2002, 419(6 903): 207-214. |
4 | JACOBSEN S B, WASSERBURG G J. Sm-Nd isotopic evolution of chondrites[J]. Earth and Planetary Science Letters, 1980, 50(1): 139-155. |
5 | TACHIKAWA K, JEANDEL C, ROY-BARMAN M. A new approach to the Nd residence time in the ocean: the role of atmospheric inputs[J]. Earth and Planetary Science Letters, 1999, 170(4): 433-446. |
6 | RUTBERG R L, HEMMING S R, GOLDSTEIN S L. Reduced North Atlantic deep water flux to the glacial Southern Ocean inferred from neodymium isotope ratios[J]. Nature, 2000, 405(6 789): 935-938. |
7 | COLIN C, FRANK N, COPARD K, et al. Neodymium isotopic composition of deep-sea corals from the NE Atlantic: implications for past hydrological changes during the Holocene[J]. Quaternary Science Reviews, 2010, 29(19/20): 2 509-2 517. |
8 | FRANK M, WHITELEY N, van de FLIERDT T, et al. Nd and Pb isotope evolution of deep water masses in the eastern Indian Ocean during the past 33 Myr[J]. Chemical Geology, 2006, 226(3/4): 264-279. |
9 | KLEVENZ V, VANCE D, SCHMIDT D N, et al. Neodymium isotopes in benthic foraminifera: core-top systematics and a down-core record from the Neogene south Atlantic[J]. Earth and Planetary Science Letters, 2008, 265(3/4): 571-587. |
10 | ROBERTS N L, PIOTROWSKI A M, MCMANUS J F, et al. Synchronous deglacial overturning and water mass source changes[J]. Science, 2010, 327(5 961): 75-78. |
11 | SCHER H D, WHITTAKER J M, WILLIAMS S E, et al. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies[J]. Nature, 2015, 523(7 562): 580-583. |
12 | HU R, PIOTROWSKI A M, BOSTOCK H C, et al. Variability of neodymium isotopes associated with planktonic foraminifera in the Pacific Ocean during the Holocene and last glacial maximum[J]. Earth and Planetary Science Letters, 2016, 447: 130-138. |
13 | HU R, PIOTROWSKI A M. Neodymium isotope evidence for glacial-interglacial variability of deepwater transit time in the Pacific Ocean[J]. Nature Communications, 2018, 9: 4709. |
14 | LING H F, BURTON K W, O’NIONS R K, et al. Evolution of Nd and Pb isotopes in central Pacific seawater from ferromanganese crusts[J]. Earth and Planetary Science Letters, 1997, 146(1/2): 1-12. |
15 | PIOTROWSKI A M, GALY A, NICHOLL J A L, et al. Reconstructing deglacial north and south Atlantic deep water sourcing using foraminiferal Nd isotopes[J]. Earth and Planetary Science Letters, 2012, 357/358: 289-297. |
16 | PENA L D, GOLDSTEIN S L, HEMMING S R, et al. Rapid changes in meridional advection of Southern Ocean intermediate waters to the tropical Pacific during the last 30 kyr[J]. Earth and Planetary Science Letters, 2013, 368: 20-32. |
17 | FAN Weijia, HAN Xiqiu, QIU Zhongyan, et al. Evolution of the Pacific meridional overturning circulation during the PlioPleistocene transition: Nd isotope records from the Fe-Mn crust[J]. Haiyang Xuebao, 2021, 43(12): 50-59. |
17 | 范维佳, 韩喜球, 邱中炎, 等. 上新世/更新世之交太平洋经向翻转流演化——海山结壳Nd同位素记录[J]. 海洋学报, 2021, 43(12): 50-59. |
18 | YU Z J, COLIN C, MA R F, et al. Antarctic Intermediate Water penetration into the northern Indian Ocean during the Last Deglaciation[J]. Earth and Planetary Science Letters, 2018, 500: 67-75. |
19 | WU J W, PAHNKE K, B?NING P, et al. Divergent Mediterranean seawater circulation during Holocene sapropel formation—reconstructed using Nd isotopes in fish debris and foraminifera[J]. Earth and Planetary Science Letters, 2019, 511: 141-153. |
20 | TACHIKAWA K, ARSOUZE T, BAYON G, et al. The large-scale evolution of neodymium isotopic composition in the global modern and Holocene Ocean revealed from seawater and archive data[J]. Chemical Geology, 2017, 457: 131-148. |
21 | MA X L, TIAN J, MA W T, et al. Changes of deep Pacific overturning circulation and carbonate chemistry during middle Miocene East Antarctic ice sheet expansion[J]. Earth and Planetary Science Letters, 2018, 484: 253-263. |
22 | ZHANG P, XU J, BEIL S, et al. Variability in Indonesian throughflow upper hydrology in response to precession‐induced tropical climate processes over the past 120 kyr[J]. Journal of Geophysical Research: Oceans, 2021, 126(8). DOI:10.1029/2020JC017014 . |
23 | PALMER M R. Rare Earth Elements in foraminifera tests[J]. Earth and Planetary Science Letters, 1985, 73(2/3/4): 285-298. |
24 | ROBERTS N L, PIOTROWSKI A M, ELDERFIELD H, et al. Rare Earth Element association with foraminifera[J]. Geochimica et Cosmochimica Acta, 2012, 94: 57-71. |
25 | MA R F, SéPULCRE S, LICARI L, et al. Changes in productivity and intermediate circulation in the northern Indian Ocean since the last deglaciation: new insights from benthic foraminiferal Cd/thinsp; Ca records and benthic assemblage analyses[J]. 2022, 18:1 757-1 774. |
26 | WILSON D J, PIOTROWSKI A M, GALY A, et al. A boundary exchange influence on deglacial neodymium isotope records from the deep western Indian Ocean[J]. Earth and Planetary Science Letters, 2012, 341/342/343/344: 35-47. |
27 | WILSON D J, PIOTROWSKI A M, GALY A, et al. Reactivity of neodymium carriers in deep sea sediments: implications for boundary exchange and paleoceanography[J]. Geochimica et Cosmochimica Acta, 2013, 109: 197-221. |
28 | WU Q, COLIN C, LIU Z F, et al. Foraminiferal εNd in the deep north-western subtropical Pacific Ocean: tracing changes in weathering input over the last 30, 000 years[J]. Chemical Geology, 2017, 470: 55-66. |
29 | MARTíNEZ-BOTí M A, VANCE D, MORTYN P G. Nd/Ca ratios in plankton-towed and core top foraminifera: confirmation of the water column acquisition of Nd[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(8). DOI:10.1029/2009GC002701 . |
30 | KRAFT S, FRANK M, HATHORNE E C, et al. Assessment of seawater Nd isotope signatures extracted from foraminiferal shells and authigenic phases of Gulf of Guinea sediments[J]. Geochimica et Cosmochimica Acta, 2013, 121: 414-435. |
31 | JEANDEL C, ARSOUZE T, LACAN F, et al. Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: a compilation, with an emphasis on the margins[J]. Chemical Geology, 2007, 239(1/2): 156-164. |
32 | LACAN F, TACHIKAWA K, JEANDEL C. Neodymium isotopic composition of the oceans: a compilation of seawater data[J]. Chemical Geology, 2012, 300/301: 177-184. |
33 | van de FLIERDT T, GRIFFITHS A M, LAMBELET M, et al. Neodymium in the oceans: a global database, a regional comparison and implications for palaeoceanographic research[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2 081): 20150293. |
34 | DU J H, HALEY B A, MIX A C. Evolution of the global overturning circulation since the Last Glacial Maximum based on marine authigenic neodymium isotopes[J]. Quaternary Science Reviews, 2020, 241: 106396. |
35 | ZHAO N, OPPO D W, HUANG K F, et al. Glacial-interglacial Nd isotope variability of North Atlantic Deep Water modulated by North American ice sheet[J]. Nature Communications, 2019, 10: 5773. |
36 | NOBLE T L, PIOTROWSKI A M, MCCAVE I N. Neodymium isotopic composition of intermediate and deep waters in the glacial southwest Pacific[J]. Earth and Planetary Science Letters, 2013, 384: 27-36. |
37 | PEARCE C R, JONES M T, OELKERS E H, et al. The effect of particulate dissolution on the neodymium (Nd) isotope and Rare Earth Element (REE) composition of seawater[J]. Earth and Planetary Science Letters, 2013, 369/370: 138-147. |
38 | HALEY B A, KLINKHAMMER G P, MCMANUS J. Rare Earth Elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1 265-1 279. |
39 | HALEY B A, DU J H, ABBOTT A N, et al. The impact of benthic processes on Rare Earth Element and neodymium isotope distributions in the oceans[J]. Frontiers in Marine Science, 2017, 4: 426. |
40 | ABBOTT A N, HALEY B A, MCMANUS J. Bottoms up: sedimentary control of the deep North Pacific Ocean’s εNd signature[J]. Geology, 2015, 43(11): 1035. |
41 | ABBOTT A N, HALEY B A, MCMANUS J, et al. The sedimentary flux of dissolved Rare Earth Elements to the ocean[J]. Geochimica et Cosmochimica Acta, 2015, 154: 186-200. |
42 | POMIèS C, DAVIES G R, CONAN S M H. Neodymium in modern foraminifera from the Indian Ocean: implications for the use of foraminiferal Nd isotope compositions in paleo-oceanography[J]. Earth and Planetary Science Letters, 2002, 203(3/4): 1 031-1 045. |
43 | WU Q, COLIN C, LIU Z F, et al. New insights into hydrological exchange between the South China Sea and the western Pacific Ocean based on the Nd isotopic composition of seawater[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 25-40. |
44 | TACHIKAWA K, TOYOFUKU T, BASILE-DOELSCH I, et al. Microscale neodymium distribution in sedimentary planktonic foraminiferal tests and associated mineral phases[J]. Geochimica et Cosmochimica Acta, 2013, 100: 11-23. |
45 | SKINNER L C, SADEKOV A, BRANDON M, et al. Rare Earth Elements in early-diagenetic foraminifer ‘coatings’: pore-water controls and potential palaeoceanographic applications[J]. Geochimica et Cosmochimica Acta, 2019, 245: 118-132. |
46 | GUO X Y, XU B C, BURNETT W C, et al. A potential proxy for seasonal hypoxia: LA-ICP-MS Mn/Ca ratios in benthic foraminifera from the Yangtze River estuary[J]. Geochimica et Cosmochimica Acta, 2019, 245: 290-303. |
47 | OSBORNE A H, HATHORNE E C, SCHIJF J, et al. The potential of sedimentary foraminiferal Rare Earth Element patterns to trace water masses in the past[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(4): 1 550-1 568. |
48 | DENG Y N, REN J B, GUO Q J, et al. Rare Earth Element geochemistry characteristics of seawater and porewater from deep sea in western Pacific[J]. Scientific Reports, 2017, 7: 16539. |
49 | ELDERFIELD H, SHOLKOVITZ E R. Rare Earth Elements in the pore waters of reducing nearshore sediments[J]. Earth and Planetary Science Letters, 1987, 82(3/4): 280-288 |
50 | ABBOTT A N, HALEY B A, MCMANUS J. The impact of sedimentary coatings on the diagenetic Nd flux[J]. Earth and Planetary Science Letters, 2016, 449: 217-227. |
51 | DENG Y N, GUO Q J, LIU C Q, et al. Early diagenetic control on the enrichment and fractionation of Rare Earth Elements in deep-sea sediments[J]. Science Advances, 2022, 8(25). DOI:10.1126/sciady.abn5466 . |
52 | DENG Yinan, REN Jiangbo, GUO Qingjun, et al. Trace elements geochemistry characteristics of seawater and porewater in deep-water basin, western Pacific[J]. Earth Science, 2019, 44(9): 3 101-3 114. |
52 | 邓义楠, 任江波, 郭庆军, 等. 西太平洋深水盆地海水及孔隙水的微量元素地球化学特征[J]. 地球科学, 2019, 44(9): 3 101-3 114. |
53 | SHOLKOVITZ E R, PIEPGRAS D J, JACOBSEN S B. The pore water chemistry of Rare Earth Elements in Buzzards Bay sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53(11): 2 847-2 856. |
54 | SOYOL-ERDENE T O, HUH Y. Rare Earth Element cycling in the pore waters of the Bering Sea Slope (IODP Exp. 323)[J]. Chemical Geology, 2013, 358: 75-89. |
55 | OSBORNE A H, HALEY B A, HATHORNE E C, et al. Neodymium isotopes and concentrations in Caribbean seawater: tracing water mass mixing and continental input in a semi-enclosed ocean basin[J]. Earth and Planetary Science Letters, 2014, 406: 174-186. |
56 | BLASER P, P?PPELMEIER F, SCHULZ H, et al. The resilience and sensitivity of northeast Atlantic deep water εNd to overprinting by detrital fluxes over the past 30, 000 years[J]. Geochimica et Cosmochimica Acta, 2019, 245: 79-97. |
57 | BLASER P, GUTJAHR M, P?PPELMEIER F, et al. Labrador Sea bottom water provenance and REE exchange during the past 35, 000 years[J]. Earth and Planetary Science Letters, 2020, 542: 116299. |
58 | DU J H, HALEY B A, MIX A C. Neodymium isotopes in authigenic phases, bottom waters and detrital sediments in the Gulf of Alaska and their implications for paleo-circulation reconstruction[J]. Geochimica et Cosmochimica Acta, 2016, 193: 14-35. |
/
〈 |
|
〉 |