Research Progress on the Synergistic Evolution of the Indonesian Seaway and Indonesian Through Flow and Its Climatic Effects Since the Late Miocene

  • Yifan DING ,
  • Jun TIAN
Expand
  • State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
DING Yifan (1997-), female, Yiwu City, Zhejiang Province, Master student. Research areas include paleoceanography and paleoclimatology. E-mail: 2031688@tongji.edu.cn
TIAN Jun (1974-), male, Hanchuan City, Hubei Province, Professor. Research areas include paleoceanography and paleoclimatology. E-mail: tianjun@tongji.edu.cn

Received date: 2022-08-02

  Revised date: 2022-09-22

  Online published: 2022-11-16

Supported by

the National Natural Science Foundation of China “Probing the relationship of the Pacific meridional overturning circulation with the glacial/interglacial variability of climate change during the late Cenozoic”(42030403)

Abstract

The Indo-Pacific warm pool is an important global source of heat and water vapor that plays a key role in climate systems. The opening and closing of the Indonesian seaway controls the transport of water and heat between the Indo-Pacific warm pools and has a significant influence. Since the Late Miocene, the Pacific Plate has subducted westward toward the Eurasian Plate, the Indian and the Eurasian plates have undergone strong land-land collision, and the Australian Plate has begun to subduct northward at 10 Ma. These tectonic movements have gradually closed the Indonesian seaway, changing the ocean circulation between the western Pacific Ocean and the eastern Indian Ocean. During the Pliocene, the source of the Indonesian Through Flow (ITF) changed from the high-temperature, high-salinity South Equatorial Pacific to the low-temperature, low-salinity North Equatorial Pacific. Consequently, the western Pacific warm pool gradually strengthened, the sea surface temperature of the eastern Indian Ocean decreased, and the subsurface salinity decreased. Changes in the ITF not only contributed to the aridification of northwestern Australia and eastern Africa but also reduced tropical heat transport to the higher latitudes of the Northern Hemisphere. The change in meridional heat transport likely promoted the formation of the Arctic ice sheet, but the specific mechanisms and magnitude of its impact need to be further studied.

Cite this article

Yifan DING , Jun TIAN . Research Progress on the Synergistic Evolution of the Indonesian Seaway and Indonesian Through Flow and Its Climatic Effects Since the Late Miocene[J]. Advances in Earth Science, 2022 , 37(11) : 1165 -1180 . DOI: 10.11867/j.issn.1001-8166.2022.077

References

1 WESTERHOLD T, MARWAN N, DRURY A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6 509): 1 383-1 387.
2 KENNETT J P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography[J]. Journal of Geophysical Research, 1977, 82(27): 3 843-3 860.
3 HODEL F, GRESPAN R, de RAFéLIS M, et al. Drake passage gateway opening and Antarctic Circumpolar Current onset 31 Ma ago: the message of foraminifera and reconsideration of the Neodymium isotope record[J]. Chemical Geology, 2021, 570: 120171.
4 MARUYAMA S, SANTOSH M, ZHAO D. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the Core-Mantle Boundary[J]. Gondwana Research, 2007, 11(1/2): 7-37.
5 HALL R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431.
6 KENNETT J P, KELLER G, SRINIVASAN M S. Miocene planktonic foraminiferal biogeography and paleoceanographic development of the Indo-Pacific region[M]// Geological Society of America Memoirs. UNITED STATES: Geological Society of America, 1985: 197-236.
7 WARA M W, RAVELO A C, DELANEY M L. Permanent El Ni?o-like conditions during the Pliocene warm period[J]. Science, 2005, 309(5 735): 758-761.
8 KARAS C, NüRNBERG D, GUPTA A K, et al. Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow[J]. Nature Geoscience, 2009, 2(6): 434-438.
9 LI Tiegang, XIONG Zhifang, JIA Qi. Water exchange between western Pacific warm pool and Indian warm pool and its climatic effects since the late Miocene[J]. Advances in Marine Science, 2020, 38(3): 377-389.
9 李铁刚, 熊志方, 贾奇. 晚中新世以来印度洋—太平洋暖池水体交换过程及其气候效应[J]. 海洋科学进展, 2020, 38(3): 377-389.
10 HALL R. Southeast Asia’s changing palaeogeography[J]. Blumea-Biodiversity, Evolution and Biogeography of Plants, 2009, 54(1): 148-161.
11 ZHOU Zuyi, JIN Xingchun, WANG Liaoliang, et al. Two closures of the Indonesian seaway and its relationship to the formation and evolution of the western Pacific Warm Pool[J]. Marine Geology & Quaternary Geology, 2004, 24(1): 7-14.
11 周祖翼, 金性春, 王嘹亮, 等. 印尼海道的两度关闭与西太平洋暖池的形成和兴衰[J]. 海洋地质与第四纪地质, 2004, 24(1): 7-14.
12 DALY M C, COOPER M A, WILSON I, et al. Cenozoic plate tectonics and basin evolution in Indonesia[J]. Marine and Petroleum Geology, 1991, 8(1): 2-21.
13 LEE T Y, LAWVER L A. Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251(1/2/3/4): 85-138.
14 SAQAB M M, BOURGET J, TROTTER J, et al. New constraints on the timing of flexural deformation along the northern Australian margin: implications for arc-continent collision and the development of the Timor Trough[J]. Tectonophysics, 2017, 696/697: 14-36.
15 MATTHEWS K J, MALONEY K T, ZAHIROVIC S, et al. Global plate boundary evolution and kinematics since the Late Paleozoic[J]. Global and Planetary Change, 2016, 146: 226-250.
16 WYRTKI K. Scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959-1961[R]. San Diego: NAGA Report 2. University of California, 1961.
17 CRESSWELL G, FRISCHE A, PETERSON J, et al. Circulation in the Timor Sea[J]. Journal of Geophysical Research, 1993, 98(C8): 14379.
18 FIEUX M, ANDRIé C, DELECLUSE P, et al. Measurements within the Pacific-Indian Oceans throughflow region[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41(7): 1 091-1 130.
19 MEYERS G, BAILEY R J, WORBY A P. Geostrophic transport of Indonesian throughflow[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995, 42(7): 1 163-1 174.
20 WYRTKI K. Indonesian through flow and the associated pressure gradient[J]. Journal of Geophysical Research, 1987, 92(C12): 12941.
21 KINDLE J C, THOMPSON J D. The 26- and 50-day oscillations in the western Indian Ocean: model results[J]. Journal of Geophysical Research, 1989, 94(C4): 4721.
22 CLARKE A J, LIU X. Interannual Sea level in the northern and eastern Indian Ocean[J]. Journal of Physical Oceanography, 1994, 24(6): 1 224-1 235.
23 FFIELD A, GORDON A L. Vertical mixing in the Indonesian thermocline[J]. Journal of Physical Oceanography, 1992, 22(2): 184-195.
24 GORDON A L. When is appearance reality? A comment on why does the Indonesian throughflow appear to originate from the north Pacific[J]. Journal of Physical Oceanography, 1995, 25(6): 1 560-1 567.
25 GORDON A L. Oceanography of the Indonesian Seas[J]. Oceanography (Washington D. C.), 2005, 18(4): 13.
26 GODFREY J S, WILKIN J, HIRST A C. Why does the Indonesian throughflow appear to originate from the north Pacific?[J]. Journal of Physical Oceanography, 1993, 23(6): 1 087-1 098.
27 GODFREY J S. The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: a review[J]. Journal of Geophysical Research: Oceans, 1996, 101(C5): 12 217-12 237.
28 GORDON A L, FINE R A. Pathways of water between the Pacific and Indian Oceans in the Indonesian Seas[J]. Nature, 1996, 379(6 561): 146-149.
29 ZHANG Jing, WEI Zexun, LI Shujiang, et al. Overviews on studies of the South China Sea branch of the Pacific-Indian Ocean throughflow[J]. Advances in Marine Science, 2014, 32(1): 107-120.
29 张晶, 魏泽勋, 李淑江, 等. 太平洋—印度洋贯穿流南海分支研究综述[J]. 海洋科学进展, 2014, 32(1): 107-120.
30 QU T D, SONG Y T, YAMAGATA T. An introduction to the South China Sea throughflow: its dynamics, variability, and application for climate[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/2/3): 3-14.
31 FANG Guohong, WEI Zexun, HUANG Qizhou, et al. Volume, heat and salt transports between the southern South China Sea and its adjacent waters, and their contribution to the Indonesian throughflow[J]. Oceanologia et Limnologia Sinica, 2002, 33(3): 296-302.
31 方国洪, 魏泽勋, 黄企洲, 等. 南海南部与外海间的体积和热、盐输运及其对印尼贯穿流的贡献[J]. 海洋与湖沼, 2002, 33(3): 296-302.
32 LIU Qinyan, HUANG Ruixin, WANG Dongxiao, et al. Mutual modulation between Indonesia through-flow and South China Sea through-flow[J]. Chinese Science Bulletin, 2006, 51(): 44-50.
32 刘钦燕, 黄瑞新, 王东晓, 等. 印度尼西亚贯穿流与南海贯穿流的相互调制[J]. 科学通报, 2006, 51(): 44-50.
33 LEBEDEV K V, YAREMCHUK M I. A diagnostic study of the Indonesian Throughflow[J]. Journal of Geophysical Research: Oceans, 2000, 105(C5): 11 243-11 258.
34 QU T D, DU Y, MEYERS G, et al. Connecting the tropical Pacific with Indian Ocean through South China Sea[J]. Geophysical Research Letters, 2005, 32(24). DOI: 10.1029/2005GL024698 .
35 QU T D, KIM Y, YAREMCHUK M, et al. Can Luzon strait transport play a role in conveying the impact of ENSO to the South China Sea? [J]. Journal of Climate, 2004, 17(18): 3 644-3 657.
36 GORDON A L, SUSANTO R D, VRANES K. Cool Indonesian throughflow as a consequence of restricted surface layer flow[J]. Nature, 2003, 425(6 960): 824-828.
37 TOZUKA T, QU T D, YAMAGATA T. Dramatic impact of the South China Sea on the Indonesian throughflow[J]. Geophysical Research Letters, 2007, 34(12). DOI:10.1029/2007GL030420 .
38 SRINIVASAN M S, SINHA D K. Early Pliocene closing of the Indonesian Seaway: evidence from north-east Indian Ocean and Tropical Pacific deep sea cores[J]. Journal of Asian Earth Sciences, 1998, 16(1): 29-44.
39 SINGH R K, GUPTA A K. Deep-sea benthic foraminiferal changes in the eastern Indian Ocean (ODP Hole 757B): their links to deep Indonesian (Pacific) flow and high latitude glaciation during the Neogene [J]. Episodes, 2010, 33(2): 74-82.
40 GALLAGHER S J, WALLACE M W, LI C L, et al. Neogene history of the West Pacific Warm Pool, Kuroshio and Leeuwin Currents[J]. Paleoceanography, 2009, 24(1). DOI: 10.1029/2008PA001660 .
41 BALI H, GUPTA A K, MOHAN K, et al. Evolution of the oligotrophic west Pacific warm pool during the Pliocene-Pleistocene boundary[J]. Paleoceanography and Paleoclimatology, 2020, 35(11). DOI:10.1029/2020PA003875 .
42 MARTIN E E, SCHER H. A Nd isotopic study of southern sourced waters and Indonesian throughflow at intermediate depths in the Cenozoic Indian Ocean[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9). DOI:10.1029/2006GC001302 .
43 LING H F, BURTON K W, O'NIONS R K, et al. Evolution of Nd and Pb isotopes in central Pacific seawater from ferromanganese crusts[J]. Earth and Planetary Science Letters, 1997, 146(1/2): 1-12.
44 van de FLIERDT T, FRANK M, HALLIDAY A N, et al. Deep and bottom water export from the Southern Ocean to the Pacific over the past 38 million years[J]. Paleoceanography, 2004, 19(1). DOI:10.1029/2003PA000923 .
45 MARTIN E E, SCHER H D. Preservation of seawater Sr and Nd isotopes in fossil fish teeth: bad news and good news[J]. Earth and Planetary Science Letters, 2004, 220(1/2): 25-39.
46 KARAS C, NüRNBERG D, TIEDEMANN R, et al. Pliocene Indonesian Throughflow and Leeuwin Current dynamics: implications for Indian Ocean polar heat flux[J]. Paleoceanography, 2011, 26(2). DOI:10.1029/2010PA001949 .
47 GOLDSTEIN S L, HEMMING S R. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics[M]// Treatise on Geochemistry. Amsterdam: Elsevier, 2003: 453-489.
48 TACHIKAWA K. Neodymium budget in the modern ocean and paleo-oceanographic implications[J]. Journal of Geophysical Research, 2003, 108(C8): 3254.
49 CHRISTENSEN B A, RENEMA W, HENDERIKS J, et al. Indonesian Throughflow drove Australian climate from humid Pliocene to arid Pleistocene[J]. Geophysical Research Letters, 2017, 44(13): 6 914-6 925.
50 XU J, KUHNT W, HOLBOURN A, et al. Changes in the vertical profile of the Indonesian Throughflow during Termination II: evidence from the Timor Sea[J]. Paleoceanography, 2006, 21(4). DOI:10.1029/2006PA001278 .
51 XU J, HOLBOURN A, KUHNT W, et al. Changes in the thermocline structure of the Indonesian outflow during Terminations I and II[J]. Earth and Planetary Science Letters, 2008, 273(1/2): 152-162.
52 XU J, KUHNT W, HOLBOURN A, et al. Indo-Pacific warm pool variability during the Holocene and last glacial maximum[J]. Paleoceanography and Paleoclimatology, 2010, 25(4). DOI:10.1029/2010PA001934 .
53 JIAN X. Change of Indonesian Throughflow outflow in response to East Asian Monsoon and ENSO activities since the Last Glacial[J]. Science China (Earth Sciences), 2014, 57(4): 791-801.
54 ZHANG Peng, XU Jian, YANG Ce, et al. Paleoceanographic records of Indonesian throughflow at its exit since the last glacial and their significance[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 129-137.
54 张鹏, 徐建, 杨策, 等. 末次冰期以来印尼穿越流出口处古海洋学记录及其意义[J]. 海洋地质与第四纪地质, 2017, 37(3): 129-137.
55 YAN X H, HO C R, ZHENG Q, et al. Temperature and size variabilities of the Western Pacific warm pool[J]. Science, 1992, 258(5 088): 1 643-1 645.
56 WEBSTER P J, MAGA?A V O, PALMER T N, et al. Monsoons: Processes, predictability, and the prospects for prediction[J]. Journal of Geophysical Research: Oceans, 1998, 103(C7): 14 451-14 510.
57 WEBSTER P J. The role of hydrological processes in ocean-atmosphere interactions[J]. Reviews of Geophysics, 1994, 32(4): 427.
58 WANG Pinxian, JIAN Zhimin, LIU Zhifei. Interactions between the earth spheres: deep-sea processes and records(II) tropical forcing of climate changes and carbon cycling[J]. Advances in Earth Science, 2006, 21(4): 338-345.
58 汪品先, 翦知湣, 刘志飞. 地球圈层相互作用中的深海过程和深海记录(II): 气候变化的热带驱动与碳循环[J]. 地球科学进展, 2006, 21(4): 338-345.
59 JIAN Zhimin, JIN Haiyan. Ocean carbon cycle and tropical forcing of climate evolution[J]. Advances in Earth Science, 2008, 23(3): 221-227.
59 翦知湣, 金海燕. 大洋碳循环与气候演变的热带驱动[J]. 地球科学进展, 2008, 23(3): 221-227.
60 GASPERI J T, KENNETT J P. Vertical thermal structure evolution of Miocene surface waters: western equatorial Pacific DSDP Site 289[J]. Marine Micropaleontology, 1993, 22(3): 235-254.
61 JIAN Z M, YU Y Q, LI B H, et al. Phased evolution of the south-north hydrographic gradient in the South China Sea since the middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 230(3/4): 251-263.
62 LI Q Y, LI B H, ZHONG G F, et al. Late Miocene development of the western Pacific warm pool: planktonic foraminifer and oxygen isotopic evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2/3/4): 465-482.
63 NATHAN S A, LECKIE R M. Early history of the western Pacific Warm Pool during the middle to late Miocene (~13.2-5.8 Ma): role of sea-level change and implications for equatorial circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274(3/4): 140-159.
64 von der HEYDT A S, DIJKSTRA H A. The impact of ocean gateways on ENSO variability in the Miocene[J]. Geological Society, London, Special Publications, 2011, 355(1): 305-318.
65 JOCHUM M, FOX-KEMPER B, MOLNAR P H, et al. Differences in the Indonesian seaway in a coupled climate model and their relevance to Pliocene climate and El Ni?o[J]. Paleoceanography, 2009, 24(1). DOI:10.1029/2008PA001678 .
66 KARAS C, NüRNBERG D, TIEDEMANN R, et al. Pliocene climate change of the Southwest Pacific and the impact of ocean gateways[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 117-124.
67 FORGET G, FERREIRA D. Global Ocean heat transport dominated by heat export from the tropical Pacific[J]. Nature Geoscience, 2019, 12(5): 351-354.
68 CHENG Lijing. SROCC: assessment of the ocean heat content change[J]. Climate Change Research, 2020, 16(2): 172-181.
68 成里京. SROCC:海洋热含量变化评估[J]. 气候变化研究进展, 2020, 16(2): 172-181.
69 KUMAR S, KUMAR A, ALI M. Computation of Ocean Heat Content, Ocean Mean Temperature of 7 layers on Operational basis[C]. Environmental Science, 2014.
70 TRENBERTH K E, ZHANG Y X. Observed interhemispheric meridional heat transports and the role of the Indonesian throughflow in the Pacific Ocean[J]. Journal of Climate, 2019, 32(24): 8 523-8 536.
71 ROSENTHAL Y, LINSLEY B K, OPPO D W. Pacific Ocean heat content during the past 10, 000 years[J]. Science, 2013, 342(6 158): 617-621.
72 CANE M A, MOLNAR P. Closing of the Indonesian seaway as a precursor to east African aridification around 3-4?million years ago[J]. Nature, 2001, 411(6 834): 157-162.
73 AUER G, de VLEESCHOUWER D, SMITH R A, et al. Timing and pacing of Indonesian throughflow restriction and its connection to late Pliocene climate shifts[J]. Paleoceanography and Paleoclimatology, 2019, 34(4): 635-657.
74 HE Y X, WANG H Y, LIU Z H. Development of the Leeuwin Current on the northwest shelf of Australia through the Pliocene-Pleistocene period[J]. Earth and Planetary Science Letters, 2021, 559: 116767.
75 SHACKLETON N J, BACKMAN J, ZIMMERMAN H, et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region[J]. Nature, 1984, 307(5 952): 620-623.
76 BILLUPS K, SCHRAG D P. Surface Ocean density gradients during the Last Glacial Maximum[J]. Paleoceanography, 2000, 15(1): 110-123.
77 JIN Xiangze, ZHANG Xuehong, ZHOU Tianjun. Fundamental framework and experiments of the third generation of IAP/LASG world ocean general circulation model[J]. Advances in Atmospheric Sciences, 1999, 16(2): 197-215.
78 YU Yongqiang, YU Rucong, ZHANG Xuehong, et al. A flexible coupled ocean-atmosphere general circulation model[J]. Advances in Atmospheric Sciences, 2002, 19(1): 169-190.
79 ZHANG Xuehong, YU Yongqiang, YU Rucong, et al. Assessments of an OGCM and the relevant CGCM part I. annual Mean simulations in the tropical Pacific Ocean[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(6): 949-970.
79 张学洪, 俞永强, 宇如聪, 等. 一个大洋环流模式和相应的海气耦合模式的评估 I.热带太平洋年平均状态[J]. 大气科学, 2003, 27(6): 949-970.
80 YU Yongqiang, ZHOU Zuyi, ZHANG Xuehong. Impact of the closure of Indonesian Sea lanes on climate: a numerical simulation study[J]. Cinese Science Bulletin, 2003, 48(): 60-64.
80 俞永强, 周祖翼, 张学洪. 印度尼西亚海道关闭对气候的影响:一个数值模拟研究[J]. 科学通报, 2003, 48(): 60-64.
81 MOLNAR P, CRONIN T W. Growth of the Maritime Continent and its possible contribution to recurring Ice Ages[J]. Paleoceanography, 2015, 30(3): 196-225.
82 WEIJER W, de RUIJTER W P M, STERL A, et al. Response of the Atlantic overturning circulation to South Atlantic sources of buoyancy[J]. Global and Planetary Change, 2002, 34(3/4): 293-311.
83 MARTíNEZ-GARCIA A, ROSELL-MELé A, MCCLYMONT E L, et al. Subpolar link to the emergence of the modern equatorial Pacific cold tongue[J]. Science, 2010, 328(5 985): 1 550-1 553.
84 WOJCIESZEK D E, DEKENS P S. Sea surface temperature and salinity in the south Atlantic subtropical gyre over the last 4 Ma[C]. American Geophysical Union, Fall Meeting 2011, 2011.
85 ROSELL-MELé A, MARTíNEZ-GARCIA A, MCCLYMONT E L. Persistent warmth across the Benguela upwelling system during the Pliocene epoch[J]. Earth and Planetary Science Letters, 2014, 386: 10-20.
86 KREBS U, PARK W, SCHNEIDER B. Pliocene aridification of Australia caused by tectonically induced weakening of the Indonesian throughflow[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309(1/2): 111-117.
87 SONG Q, VECCHI G, ROSATI A. The role of the Indonesian throughflow in the indo-Pacific climate variability in the GFDL coupled climate model[J]. Journal of Climate, 2007, 20(11). DOI:10.1175/JCLI4133.1 .
88 KARAS C, NüRNBERG D, BAHR A, et al. Pliocene oceanic seaways and global climate[J]. Scientific Reports, 2017, 7: 39842.
89 RODGERS K B, LATIF M, LEGUTKE S. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian Throughflow[J]. Geophysical Research Letters, 2000, 27(18): 2 941-2 944.
90 BRIERLEY C M, FEDOROV A V. Comparing the impacts of Miocene-Pliocene changes in inter-ocean gateways on climate: central American Seaway, Bering Strait, and Indonesia[J]. Earth and Planetary Science Letters, 2016, 444: 116-130.
91 FEDOROV A V, BRIERLEY C M, LAWRENCE K T, et al. Patterns and mechanisms of early Pliocene warmth[J]. Nature, 2013, 496(7 443): 43-49.
92 BRIERLEY C M, FEDOROV A V. Tidal mixing around Indonesia and the maritime continent: implications for paleoclimate simulations[J]. Geophysical Research Letters, 2011, 38(24). DOI:10.1029/2011GL050027 .
93 HAYWOOD A M, DOWSETT H J, DOLAN A M, et al. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design[J]. Climate of the Past, 2016, 12(3): 663-675.
Outlines

/