Received date: 2022-06-30
Revised date: 2022-08-02
Online published: 2022-09-28
Supported by
the National Natural Science Foundation of China “Influence of Arctic sea-ice-air system on extreme weather and climate events during winter in Eurasia”(41790472);The China Postdoctoral Science Foundation(BX20220078)
The Atlantic Multidecadal Variability (AMV) refers to multidecadal (60~80 year) quasi‐oscillation in North Atlantic sea surface temperatures. The AMV has significant impacts on global and regional climate. However, the fundamental physical mechanisms and processes underlying the AMV remain a hot research topic. Internal ocean dynamics, atmospheric stochastic forcing, and external forcings of either anthropogenic or natural origins all have contributed to the AMV. Improved knowledge of the AMV is of great scientific importance for understanding the causes of global climate change as well as for decadal climate predictions. This paper reviews the definition and main characteristics of the AMV, its underlying mechanisms and climate impacts. This study also discusses the key topics and outstanding issues in AMV research.
Minhua QIN , Aiguo DAI , Renhe ZHANG . A Review of the Atlantic Multidecadal Variability[J]. Advances in Earth Science, 2022 , 37(9) : 963 -978 . DOI: 10.11867/j.issn.1001-8166.2022.059
1 | Bindoff N L, Cheung W W L, Kairo J G, et al. Changing ocean, marine ecosystems, and dependent communities[M]// P?RTNER H O, ROBERTS D C, MASSON-DELMOTTE V, et al. IPCC special report on the ocean and cryosphere in a changing climate. 2019. |
2 | DESER C, ALEXANDER M A, XIE S P, et al. Sea surface temperature variability: patterns and mechanisms[J]. Annual Review of Marine Science, 2010, 2: 115-143. |
3 | ZHANG R, SUTTON R, DANABASOGLU G, et al. A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts[J]. Reviews of Geophysics, 2019, 57(2): 316-675. |
4 | KOSAKA Y, XIE S P. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 2013, 501(7 467): 403-407. |
5 | DAI A G, FYFE J C, XIE S P, et al. Decadal modulation of global surface temperature by internal climate variability[J]. Nature Climate Change, 2015, 5(6): 555-559. |
6 | MEDHAUG I, STOLPE M B, FISCHER E M, et al. Reconciling controversies about the ‘global warming hiatus’[J]. Nature, 2017, 545(7 652): 41-47. |
7 | KUSHNIR Y. Interdecadal variations in north Atlantic Sea surface temperature and associated atmospheric conditions[J]. Journal of Climate, 1994, 7(1): 141-157. |
8 | SCHLESINGER M E, RAMANKUTTY N. An oscillation in the global climate system of period 65-70 years[J]. Nature, 1994, 367(6 465): 723-726. |
9 | KERR R A. A north Atlantic climate pacemaker for the centuries[J]. Science, 2000, 288(5 473): 1 984-1 985. |
10 | LI Shuanglin, WANG Yanming, GAO Yongqi. A review of the researches on the Atlantic Multidecadal Oscillation(AMO) and its climate influence[J]. Transactions of Atmospheric Sciences, 2009, 32(3): 458-465. |
10 | 李双林, 王彦明, 郜永祺. 北大西洋年代际振荡(AMO)气候影响的研究评述[J]. 大气科学学报, 2009, 32(3): 458-465. |
11 | CHYLEK P, KLETT J D, LESINS G, et al. The Atlantic Multidecadal Oscillation as a dominant factor of oceanic influence on climate[J]. Geophysical Research Letters, 2014, 41(5): 1 689-1 697. |
12 | STEINMAN B A, MANN M E, MILLER S K. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures [J]. Science, 2015, 347(6 225): 988-991. |
13 | CLEMENT A, BELLOMO K, MURPHY L N, et al. The Atlantic Multidecadal Oscillation without a role for ocean circulation[J]. Science, 2015, 350(6 258): 320-324. |
14 | OTTER? O H, BENTSEN M, DRANGE H, et al. External forcing as a metronome for Atlantic multidecadal variability[J]. Nature Geoscience, 2010, 3(10): 688-694. |
15 | BOOTH B B B, DUNSTONE N J, HALLORAN P R, et al. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability[J]. Nature, 2012, 484(7 393): 228-232. |
16 | VECCHI G A, DELWORTH T L, BOOTH B. Origins of Atlantic decadal swings[J]. Nature, 2017, 548(7 667): 284-285. |
17 | SUTTON R T, MCCARTHY G D, ROBSON J, et al. Atlantic multidecadal variability and the U.K. ACSIS program[J]. Bulletin of the American Meteorological Society, 2018, 99(2): 415-425. |
18 | MANN M E, STEINMAN B A, BROUILLETTE D J, et al. Multidecadal climate oscillations during the past millennium driven by volcanic forcing[J]. Science, 2021, 371(6 533): 1 014-1 019. |
19 | BJERKNES J. Atlantic air-sea interaction[J]. Advances in Geophysics, 1964, 10: 1-82. |
20 | DELWORTH T L, MANN M E. Observed and simulated multidecadal variability in the Northern Hemisphere[J]. Climate Dynamics, 2000, 16(9): 661-676. |
21 | GRAY S T, GRAUMLICH L J, BETANCOURT J L, et al. A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D.[J]. Geophysical Research Letters, 2004, 31(12). DOI: 10.1029/2004GL019932 . |
22 | WANG J L, YANG B, LJUNGQVIST F C, et al. Internal and external forcing of multidecadal Atlantic climate variability over the past 1, 200 years[J]. Nature Geoscience, 2017, 10(7): 512-517. |
23 | SINGH H K A, HAKIM G J, TARDIF R, et al. Insights into Atlantic multidecadal variability using the Last Millennium Reanalysis framework[J]. Climate of the Past, 2018, 14(2): 157-174. |
24 | TRENBERTH K E, SHEA D J. Atlantic hurricanes and natural variability in 2005[J]. Geophysical Research Letters, 2006, 33(12): L12704. |
25 | QIN M H, DAI A G, HUA W J. Quantifying contributions of internal variability and external forcing to Atlantic multidecadal variability since 1870[J]. Geophysical Research Letters, 2020, 47(22). DOI: e2020GL089504 . |
26 | SUTTON R T, HODSON D L R. Atlantic Ocean forcing of North American and European summer climate[J]. Science, 2005, 309(5 731): 115-118. |
27 | ENFIELD D B, MESTAS-NU?EZ A M, TRIMBLE P J. The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental US[J]. Geophysical Research Letters, 2001, 28(10): 2 077-2 080. |
28 | SUTTON R T, DONG B W. Atlantic Ocean influence on a shift in European climate in the 1990s[J]. Nature Geoscience, 2012, 5(11): 788-792. |
29 | TING M F, KUSHNIR Y, SEAGER R, et al. Forced and internal twentieth-century SST trends in the North Atlantic[J]. Journal of Climate, 2009, 22(6): 1 469-1 481. |
30 | MOHINO E, JANICOT S, BADER J. Sahel rainfall and decadal to multi-decadal sea surface temperature variability[J]. Climate Dynamics, 2011, 37(3): 419-440. |
31 | FRANKCOMBE L M, ENGLAND M H, KAJTAR J B, et al. On the choice of ensemble mean for estimating the forced signal in the presence of internal variability[J]. Journal of Climate, 2018, 31(14): 5 681-5 693. |
32 | FRANKCOMBE L M, ENGLAND M H, MANN M E, et al. Separating internal variability from the externally forced climate response[J]. Journal of Climate, 2015, 28(20): 8 184-8 202. |
33 | QIN M H, DAI A G, HUA W J. Aerosol-forced multidecadal variations across all ocean basins in models and observations since 1920[J]. Science Advances, 2020, 6(29): eabb0425. |
34 | BOOTH B B. Why the Pacific is cool[J]. Science, 2015, 347(6 225): 952. |
35 | DELWORTH T, MANABE S, STOUFFER R J. Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model[J]. Journal of Climate, 1993, 6(11): 1 993-2 011. |
36 | KNIGHT J R. A signature of persistent natural thermohaline circulation cycles in observed climate[J]. Geophysical Research Letters, 2005, 32(20): L20708. |
37 | ZHANG R, SUTTON R, DANABASOGLU G, et al. Comment on The Atlantic Multidecadal Oscillation without a role for ocean circulation[J]. Science, 2016, 352(6 293): 1527. |
38 | THOMAS M D, FEDOROV A V. Mechanisms and impacts of a partial AMOC recovery under enhanced freshwater forcing[J]. Geophysical Research Letters, 2019, 46(6): 3 308-3 316. |
39 | DELWORTH T L, GREATBATCH R J. Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing[J]. Journal of Climate, 2000, 13(9): 1 481-1 495. |
40 | JUNGCLAUS J H, HAAK H, LATIF M, et al. Arctic-north Atlantic interactions and multidecadal variability of the meridional overturning circulation[J]. Journal of Climate, 2005, 18(19): 4 013-4 031. |
41 | BA J, KEENLYSIDE N S, PARK W, et al. A mechanism for Atlantic multidecadal variability in the Kiel Climate Model[J]. Climate Dynamics, 2013, 41(7): 2 133-2 144. |
42 | GONG Zhanqiu, SUN Cheng, LI Jianping, et al. The application of causality analysis based on the theory of information flow in distinguishing the Atlantic multi-decadal oscillation driving mechanism[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(5): 1 081-1 094. |
42 | 宫湛秋, 孙诚, 李建平, 等. 基于信息流理论的因果分析在辨析大西洋多年代际振荡物理机制中的应用[J]. 大气科学, 2019, 43(5): 1 081-1 094. |
43 | ZHANG J T, ZHANG R. On the evolution of Atlantic meridional overturning circulation fingerprint and implications for decadal predictability in the North Atlantic[J]. Geophysical Research Letters, 2015, 42(13): 5 419-5 426. |
44 | OELSMANN J, BORCHERT L, HAND R, et al. Linking ocean forcing and atmospheric interactions to Atlantic multidecadal variability in MPI-ESM1.2[J]. Geophysical Research Letters, 2020, 47(10). DOI: 10.1029/2020GL087259 . |
45 | COLLINS M, SINHA B. Predictability of decadal variations in the thermohaline circulation and climate[J]. Geophysical Research Letters, 2003, 30(6). DOI: 10.1029/2002GL016504 . |
46 | ZHANG R. On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the Atlantic multidecadal variability: persistence and coherence of SST and SSS[J]. Geophysical Research Letters, 2017, 44(15). DOI: 10.1002/2017GL074342 . |
47 | MEDHAUG I, FUREVIK T. North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation[J]. Ocean Science, 2011, 7(3): 389-404. |
48 | TANDON N F, KUSHNER P J. Does external forcing interfere with the AMOC’s influence on north Atlantic Sea surface temperature?[J]. Journal of Climate, 2015, 28(16): 6 309-6 323. |
49 | SUN C, ZHANG J, LI X, et al. Atlantic Meridional Overturning Circulation reconstructions and instrumentally observed multidecadal climate variability: a comparison of indicators[J]. International Journal of Climatology, 2021, 41(1): 763-778. |
50 | CLEMENT A, CANE M A, MURPHY L N, et al. Response to comment on the atlantic multidecadal oscillation without a role for ocean circulation[J]. Science, 2016, 352(6 293): 1527. |
51 | CANE M A, CLEMENT A C, MURPHY L N, et al. Low-pass filtering, heat flux, and Atlantic multidecadal variability[J]. Journal of Climate, 2017, 30(18): 7 529-7 553. |
52 | O'REILLY C H, HUBER M, WOOLLINGS T, et al. The signature of low‐frequency oceanic forcing in the Atlantic Multidecadal Oscillation[J]. Geophysical Research Letters, 2016, 43(6): 2 810-2 818. |
53 | SUN C, LI J P, KUCHARSKI F, et al. Contrasting spatial structures of Atlantic Multidecadal Oscillation between observations and slab ocean model simulations[J]. Climate Dynamics, 2019, 52(3): 1 395-1 411. |
54 | WILLS R C J, ARMOUR K C, BATTISTI D S, et al. Ocean-atmosphere dynamical coupling fundamental to the Atlantic multidecadal oscillation[J]. Journal of Climate, 2019, 32(1): 251-272. |
55 | SUN C, LI J P, JIN F F. A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO[J]. Climate Dynamics, 2015, 45(7): 2 083-2 099. |
56 | DELWORTH T L, ZENG F R. The impact of the north Atlantic oscillation on climate through its influence on the Atlantic meridional overturning circulation[J]. Journal of Climate, 2016, 29(3): 941-962. |
57 | DELWORTH T L, ZENG F R, VECCHI G A, et al. The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere[J]. Nature Geoscience, 2016, 9(7): 509-512. |
58 | DELWORTH T L, ZENG F R, ZHANG L P, et al. The central role of ocean dynamics in connecting the north Atlantic oscillation to the extratropical component of the Atlantic multidecadal oscillation[J]. Journal of Climate, 2017, 30(10): 3 789-3 805. |
59 | YUAN T L, OREOPOULOS L, ZELINKA M, et al. Positive low cloud and dust feedbacks amplify tropical north Atlantic multidecadal oscillation[J]. Geophysical Research Letters, 2016, 43(3): 1 349-1 356. |
60 | BROWN P T, LOZIER M S, ZHANG R, et al. The necessity of cloud feedback for a basin‐scale Atlantic Multidecadal Oscillation[J]. Geophysical Research Letters, 2016, 43(8): 3 955-3 963. |
61 | DAI A G. Arctic amplification is the main cause of the Atlantic meridional overturning circulation weakening under large CO2 increases [J]. Climate Dynamics, 2022, 58(11): 3 243-3 259. |
62 | DENG J C, DAI A G. Sea ice-air interactions amplify multidecadal variability in the North Atlantic and Arctic region[J]. Nature Communications, 2022, 13: 2100. |
63 | BELLUCCI A, MARIOTTI A, GUALDI S. The role of forcings in the twentieth-century north Atlantic multidecadal variability: the 1940-75 north Atlantic cooling case study[J]. Journal of Climate, 2017, 30(18): 7 317-7 337. |
64 | MURPHY L N, BELLOMO K, CANE M, et al. The role of historical forcings in simulating the observed Atlantic multidecadal oscillation[J]. Geophysical Research Letters, 2017, 44(5): 2 472-2 480. |
65 | BELLOMO K, MURPHY L N, CANE M A, et al. Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble[J]. Climate Dynamics, 2018, 50(9): 3 687-3 698. |
66 | MANN M E, EMANUEL K A. Atlantic hurricane trends linked to climate change[J]. Eos, Transactions American Geophysical Union, 2006, 87(24): 233. |
67 | WATANABE M, TATEBE H. Reconciling roles of sulphate aerosol forcing and internal variability in Atlantic multidecadal climate changes[J]. Climate Dynamics, 2019, 53(7): 4 651-4 665. |
68 | HAUSTEIN K, OTTO F E L, VENEMA V, et al. A limited role for unforced internal variability in twentieth-century warming[J]. Journal of Climate, 2019, 32(16): 4 893-4 917. |
69 | ZHANG R, DELWORTH T L, DIXON K W, et al. Have aerosols caused the observed Atlantic multidecadal variability? [J]. Journal of the Atmospheric Sciences, 2013, 70(4): 1 135-1 144. |
70 | KNUDSEN M F, JACOBSEN B H, SEIDENKRANTZ M S, et al. Evidence for external forcing of the Atlantic Multidecadal Oscillation since termination of the Little Ice Age[J]. Nature Communications, 2014, 5: 3323. |
71 | RUPRICH-ROBERT Y, MSADEK R, CASTRUCCIO F, et al. Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models[J]. Journal of Climate, 2017, 30(8): 2 785-2 810. |
72 | SUTTON R T, HODSON D L R. Climate response to basin-scale warming and cooling of the north Atlantic Ocean[J]. Journal of Climate, 2007, 20(5): 891-907. |
73 | O’REILLY C H, WOOLLINGS T, ZANNA L. The dynamical influence of the Atlantic multidecadal oscillation on continental climate[J]. Journal of Climate, 2017, 30(18): 7 213-7 230. |
74 | MCCABE G J, PALECKI M A, BETANCOURT J L. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(12): 4 136-4 141. |
75 | NIGAM S, GUAN B, RUIZ-BARRADAS A. Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet periods over the Great Plains[J]. Geophysical Research Letters, 2011, 38(16). DOI: 10.1029/2011GL048650 . |
76 | RUPRICH-ROBERT Y, DELWORTH T, MSADEK R, et al. Impacts of the Atlantic multidecadal variability on North American summer climate and heat waves[J]. Journal of Climate, 2018, 31(9): 3 679-3 700. |
77 | GHOSH R, MüLLER W A, BAEHR J, et al. Impact of observed north Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating[J]. Climate Dynamics, 2017, 48(11): 3 547-3 563. |
78 | QASMI S, CASSOU C, BOé J. Teleconnection between Atlantic multidecadal variability and European temperature: diversity and evaluation of the coupled model intercomparison project phase 5 models[J]. Geophysical Research Letters, 2017, 44(21). DOI:10.1002/2017gl074886 . |
79 | GOLDENBERG S B, LANDSEA C W, MESTAS-NUNEZ A M, et al. The recent increase in Atlantic hurricane activity: causes and implications[J]. Science, 2001, 293(5 529): 474-479. |
80 | WANG C Z, DONG S F, EVAN A T, et al. Multidecadal covariability of north Atlantic Sea surface temperature, African dust, Sahel rainfall, and Atlantic hurricanes[J]. Journal of Climate, 2012, 25(15): 5 404-5 415. |
81 | ZHANG R, DELWORTH T L. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes[J]. Geophysical Research Letters, 2006, 33(17). DOI: 10.1029/2006GL026267 . |
82 | KNIGHT J R, FOLLAND C K, SCAIFE A A. Climate impacts of the Atlantic multidecadal oscillation[J]. Geophysical Research Letters, 2006, 33(17): L17706. |
83 | SI D, DING Y H. Oceanic forcings of the interdecadal variability in east Asian summer rainfall[J]. Journal of Climate, 2016, 29(21): 7 633-7 649. |
84 | MONERIE P A, ROBSON J, DONG B W, et al. Role of the Atlantic multidecadal variability in modulating East Asian climate[J]. Climate Dynamics, 2021, 56(1): 381-398. |
85 | LI Shuanglin, JING Yuanyuan, LUO Feifei. The potential connection between China surface air temperature and the Atlantic Multidecadal Oscillation(AMO) in the Pre-industrial Period[J]. Scientia Sinica (Terrae), 2015, 45(6): 864-878. |
85 | 李双林, 井元元, 罗菲菲. 工业革命前中国气温与大西洋年代际振荡(AMO)的可能联系[J]. 中国科学: 地球科学, 2015, 45(6): 864-878. |
86 | FOLLAND C K, PALMER T N, PARKER D E. Sahel rainfall and worldwide sea temperatures, 1901-85[J]. Nature, 1986, 320(6 063): 602-607. |
87 | MARTIN E R, THORNCROFT C, BOOTH B B B. The multidecadal Atlantic SST—Sahel rainfall teleconnection in CMIP5 simulations[J]. Journal of Climate, 2014, 27(2): 784-806. |
88 | HUA W J, DAI A G, ZHOU L M, et al. An externally forced decadal rainfall seesaw pattern over the Sahel and southeast Amazon[J]. Geophysical Research Letters, 2019, 46(2): 923-932. |
89 | KRISHNAMURTHY L, KRISHNAMURTHY V. Teleconnections of Indian monsoon rainfall with AMO and Atlantic tripole[J]. Climate Dynamics, 2016, 46(7/8): 2 269-2 285. |
90 | MONERIE P A, ROBSON J, DONG B W, et al. Effect of the Atlantic multidecadal variability on the global monsoon[J]. Geophysical Research Letters, 2019, 46(3): 1 765-1 775. |
91 | LU R Y, DONG B W, DING H. Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon[J]. Geophysical Research Letters, 2006, 33(24): L24701. |
92 | LI S L, PERLWITZ J, QUAN X W, et al. Modelling the influence of north Atlantic multidecadal warmth on the Indian summer rainfall[J]. Geophysical Research Letters, 2008, 35(5): L05804. |
93 | AHMAD A, LI S L, LUO F F, et al. The unstable connection between Atlantic Multidecadal Oscillation and Indian summer monsoon in CESM-LE[J]. Climate Dynamics, 2022, 58(5/6): 1 525-1 537. |
94 | WANG Y M, LI S L, LUO D H. Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D2): D02112. |
95 | LUO F F, LI S L, FUREVIK T. The connection between the Atlantic Multidecadal Oscillation and the Indian summer monsoon in Bergen climate model version 2.0[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D19): D19117. |
96 | WANG L, XU P Q, CHEN W, et al. Interdecadal variations of the silk road pattern[J]. Journal of Climate, 2017, 30(24): 9 915-9 932. |
97 | HONG X W, LU R Y, LI S L. Amplified summer warming in Europe-west Asia and northeast Asia after the mid-1990s[J]. Environmental Research Letters, 2017, 12(9): 094007. |
98 | HUA W J, QIN M H, DAI A G, et al. Reconciling human and natural drivers of the tripole pattern of multidecadal summer temperature variations over Eurasia[J]. Geophysical Research Letters, 2021, 48(14): e2021GL093971. |
99 | SUN C, LI J P, FENG J, et al. A decadal-scale teleconnection between the north Atlantic oscillation and subtropical eastern Australian rainfall[J]. Journal of Climate, 2015, 28(3): 1 074-1 092. |
100 | SUN C, LI J P, LI X, et al. Oceanic forcing of the interhemispheric SST dipole associated with the Atlantic Multidecadal Oscillation[J]. Environmental Research Letters, 2018, 13(7): 074026. |
101 | YU J Y, KAO P K, PAEK H, et al. Linking emergence of the central Pacific El Ni?o to the Atlantic multidecadal oscillation[J]. Journal of Climate, 2015, 28(2): 651-662. |
102 | DONG B W, SUTTON R T, SCAIFE A A. Multidecadal modulation of El Ni?o-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures[J]. Geophysical Research Letters, 2006, 33(8): L08705. |
103 | KRAVTSOV S, SPANNAGLE C. Multidecadal climate variability in observed and modeled surface temperatures[J]. Journal of Climate, 2008, 21(5): 1 104-1 121. |
104 | MILES M W, DIVINE D V, FUREVIK T, et al. A signal of persistent Atlantic multidecadal variability in Arctic Sea ice[J]. Geophysical Research Letters, 2014, 41(2): 463-469. |
105 | GUO Y P, LI J P, FENG J, et al. The multidecadal variability of the asymmetric mode of the boreal autumn Hadley circulation and its link to the Atlantic Multidecadal Oscillation[J]. Journal of Climate, 2016, 29(15): 5 625-5 641. |
106 | SUN C, KUCHARSKI F, LI J, et al. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation [J]. Nature Communications, 2017, 8: 15998. |
107 | LIU Y S, GONG Z Q, SUN C, et al. Multidecadal seesaw in Hadley circulation strength between the two hemispheres caused by the Atlantic multidecadal variability[J]. Frontiers in Earth Science, 2020, 8: 580457. |
108 | LI X, XIE S P, GILLE S T, et al. Atlantic-induced pan-tropical climate change over the past three decades [J]. Nature Climate Change, 2016, 6(3): 275-279. |
109 | SUN C, LIU Y S, XUE J Q, et al. The importance of inter‐basin atmospheric teleconnection in the SST footprint of Atlantic Multidecadal Oscillation over western Pacific[J]. Climate Dynamics, 2021, 57(1/2): 239-252. |
110 | MEEHL G A, HU A, CASTRUCCIO F, et al. Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes [J]. Nature Geoscience, 2021, 14(1): 36-42. |
111 | SUN C, LIU Y S, GONG Z Q, et al. The footprint of Atlantic Multidecadal Oscillation on the intensity of tropical cyclones over the western north Pacific[J]. Frontiers in Earth Science, 2020, 8: 604807. |
112 | ZHANG R H. Natural and human-induced changes in summer climate over the East Asian monsoon region in the last half century: a review[J]. Advances in Climate Change Research, 2015, 6(2): 131-140. |
113 | IPCC. Climate change 2013: the physical science basis[M]// STOCKER T F, QIN D H, PLATTNER G K, et al. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013. |
114 | MANN M E, STEINMAN B A, MILLER S K. On forced temperature changes, internal variability, and the AMO[J]. Geophysical Research Letters, 2014, 41(9): 3 211-3 219. |
115 | ZHOU Tianjun, WU Bo. Decadal climate prediction: scientific frontier and challenge[J]. Advances in Earth Science, 2017, 32(4): 331-341. |
115 | 周天军, 吴波. 年代际气候预测问题: 科学前沿与挑战[J]. 地球科学进展, 2017, 32(4): 331-341. |
116 | QIN M H, DAI A G, HUA W J. Influence of anthropogenic warming on the Atlantic multidecadal variability and its impact on global climate in the twenty-first century in the MPI-GE simulations[J]. Journal of Climate, 2022, 35(9): 2 805-2 821. |
117 | MANN M E, STEINMAN B A, MILLER S K. Absence of internal multidecadal and interdecadal oscillations in climate model simulations[J]. Nature Communications, 2020, 11(1): 49. |
118 | SCHMIDT G A, SHINDELL D T, TSIGARIDIS K. Reconciling warming trends [J]. Nature Geoscience, 2014, 7(3): 158-160. |
119 | BOUCHER O, RANDALL D, ARTAXO P, et al. Clouds and aerosols [M]// Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge,United Kingdom and New York,NY,USA:Cambridge University Press, 2013. |
120 | SANTER B D, BONFILS C, PAINTER J F, et al. Volcanic contribution to decadal changes in tropospheric temperature[J]. Nature Geoscience, 2014, 7(3): 185-189. |
121 | SATO Y, GOTO D, MICHIBATA T, et al. Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model[J]. Nature Communications, 2018, 9: 985. |
122 | HUA W J, DAI A G, QIN M H. Contributions of internal variability and external forcing to the recent Pacific decadal variations[J]. Geophysical Research Letters, 2018, 45(14): 7 084-7 092. |
123 | TOLL V, CHRISTENSEN M, QUAAS J, et al. Weak average liquid-cloud-water response to anthropogenic aerosols[J]. Nature, 2019, 572(7 767): 51-55. |
124 | CHYLEK P, FOLLAND C, KLETT J D, et al. CMIP5 climate models overestimate cooling by volcanic aerosols[J]. Geophysical Research Letters, 2020, 47(3): e2020GL087047. |
125 | WU Bo, XIN Xiaoge. Short commentary on CMIP6 Decadal Climate Prediction Project(DCPP)[J]. Climate Change Research, 2019, 15(5): 476-480. |
125 | 吴波, 辛晓歌. CMIP6年代际气候预测计划(DCPP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 476-480. |
126 | ROBSON J, ORTEGA P, SUTTON R. A reversal of climatic trends in the north Atlantic since 2005[J]. Nature Geoscience, 2016, 9(7): 513-517. |
127 | CHEMKE R, ZANNA L, POLVANI L M. Identifying a human signal in the north Atlantic warming hole[J]. Nature Communications, 2020, 11(1): 1540. |
128 | CAESAR L, RAHMSTORF S, ROBINSON A, et al. Observed fingerprint of a weakening Atlantic Ocean overturning circulation[J]. Nature, 2018, 556(7 700): 191-196. |
129 | CAI W J, WU L X, LENGAIGNE M, et al. Pantropical climate interactions[J]. Science, 2019, 363(6 430): eaav4236. |
130 | WANG C Z. Three-ocean interactions and climate variability: a review and perspective[J]. Climate Dynamics, 2019, 53(7/8): 5 119-5 136. |
131 | NIGAM S, SENGUPTA A, RUIZ-BARRADAS A. Atlantic-Pacific links in observed multidecadal SST variability: is the Atlantic multidecadal oscillation’s phase reversal orchestrated by the Pacific decadal oscillation?[J]. Journal of Climate, 2020, 33(13): 5 479-5 505. |
132 | RUPRICH-ROBERT Y, MORENO-CHAMARRO E, LEVINE X, et al. Impacts of Atlantic multidecadal variability on the tropical Pacific: a multi-model study[J]. NPJ Climate and Atmospheric Science, 2021, 4: 33. |
133 | HUA W J, DAI A G, QIN M H. Reconciling roles of external forcing and internal variability in Indian Ocean decadal variability since 1920 [J]. Geophysical Research Letters, 2022, 49(9): e2021GL097198. |
/
〈 |
|
〉 |