Research Progress on Compositions, Sources, and Ecological Effects of Aerosol Silicon in Coastal Areas

  • Jing ZHANG ,
  • Zhaoliang SONG ,
  • Qiang LI ,
  • Shaobo SUN ,
  • Qian HAO ,
  • Xiangbin RAN ,
  • Wei HU ,
  • Hongyan LIU
Expand
  • 1.Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
    2.Research Center for Marine Ecology and Key Laboratory of Marine Eco-Environmental Science and Technology of Ministry of Natural Resources, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
    3.School of Resources & Environment and Tourism, Anyang Normal University, Anyang Henan 455000, China
ZHANG Jing (1996-), male, Lianshui City, Jiangsu Province, Master student. Research areas include biogenic elements of atmospheric aerosol. E-mail: zhangj_1996@163.com
SONG Zhaoliang (1978-), male, Yiwu City, Zhejiang Province, Professor. Research areas include biogeochemistry. E-mail: zhaoliang.song@tju.edu.cn

Received date: 2021-12-15

  Revised date: 2022-05-29

  Online published: 2022-06-20

Supported by

the National Natural Science Foundation of China “Biogeochemical silicon cycle and carbon sink effects in coastal wetlands of Bohai Rim”(41930862);The National Key Research and Development Program of China “Mechanism and chemical process characterization of multi-isotope fractionation of atmospheric particulate matter”(0401220002)

Abstract

Silicon is the second most abundant element in the earth’s crust and plays an important role in soil formation, growth, and evolution of terrestrial higher plants, aquatic phytoplankton, and the carbon cycle. Studying the silicon biogeochemical cycle has become increasingly important under current accelerated climate change. In recent years, studies on the silicon cycle in terrestrial and oceanic systems have been relatively thorough, whereas those in atmospheric systems are lacking. Aerosols are important carriers of active components and geochemical cycles of elements in the atmosphere. To date, the compositions and sources of silicon in aerosols and the importance of silicon sedimentation load in some regions are not well understood. This restricts our understanding of the silicon cycle in the surface earth system. Based on the current research, this study summarizes the compositions of aerosol silicon and its coupling with other elements, reviews the application of emerging silicon isotopes in atmospheric particulate matter tracing, and discusses the ecological effects of long-distance transportation of silicon in coastal areas and the impacts of silicon nanoparticles on human health. Generally, silicon exists in aerosols mainly in the form of inorganic silicon, and the deposition of aerosol silicon in some offshore waters has a controlling effect on phytoplankton growth. Further research should focus on the generation and transformation mechanisms of aerosol silicon, silicon deposition, its influence on key processes of biogeochemical cycles, and the toxicological effects of silicon nanoparticles.

Cite this article

Jing ZHANG , Zhaoliang SONG , Qiang LI , Shaobo SUN , Qian HAO , Xiangbin RAN , Wei HU , Hongyan LIU . Research Progress on Compositions, Sources, and Ecological Effects of Aerosol Silicon in Coastal Areas[J]. Advances in Earth Science, 2022 , 37(6) : 563 -574 . DOI: 10.11867/j.issn.1001-8166.2022.033

References

1 MAO Jietai, ZHANG Junhua, WANG Meihua. Summary comment on research of atmospheric aerosl in China[J]. Acta Meteorologica Sinica, 2002, 60(5): 625-634.
1 毛节泰, 张军华, 王美华. 中国大气气溶胶研究综述[J]. 气象学报, 2002, 60(5): 625-634.
2 QIAN Yun, FU Congbin, WANG Shuyu. Mineral dust and climate change[J]. Advances in Earth Science, 1999, 14(4): 391-394.
2 钱云, 符淙斌, 王淑瑜. 沙尘气溶胶与气候变化[J]. 地球科学进展, 1999, 14(4): 391-394.
3 ZHENG Yunhao, LI Jing, CHEN Haoxuan, et al. Bioaerosol research: yesterday, today and tomorrow[J]. Chinese Science Bulletin, 2018, 63(10): 878-894.
3 郑云昊, 李菁, 陈灏轩, 等. 生物气溶胶的昨天、今天和明天[J]. 科学通报, 2018, 63(10): 878-894.
4 MAHOWALD N. Aerosol indirect effect on biogeochemical cycles and climate[J]. Science, 2011, 334(6 057): 794-796.
5 MORERA-GóMEZ Y, SANTAMARíA J M, ELUSTONDO D, et al. Carbon and nitrogen isotopes unravels sources of aerosol contamination at Caribbean rural and urban coastal sites[J]. Science of the Total Environment, 2018, 642: 723-732.
6 FAN Y B, LIU C Q, LI L J, et al. Large contributions of biogenic and anthropogenic sources to fine organic aerosols in Tianjin, North China[J]. Atmospheric Chemistry and Physics, 2020, 20(1): 117-137.
7 ERISMAN J W, GALLOWAY J N, SEITZINGER S, et al. Consequences of human modification of the global nitrogen cycle[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1 621): 20130116.
8 GUO S, HU M, PENG J F, et al. Remarkable nucleation and growth of ultrafine particles from vehicular exhaust[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(7): 3 427-3 432.
9 LI S M, WINCHESTER J W. Aerosol silicon and associated elements in the Arctic high and mid-troposphere[J]. Atmospheric Environment Part A General Topics, 1993, 27(17/18):2 907-2 912.
10 BASILE-DOELSCH I, MEUNIER J D, PARRON C. Another continental pool in the terrestrial silicon cycle[J]. Nature, 2005, 433(7 024): 399-402.
11 HIRST C, OPFERGELT S, GASPARD F, et al. Silicon isotopes reveal a non-glacial source of silicon to crescent stream, McMurdo dry valleys, Antarctica[J]. Frontiers in Earth Science, 2020, 8: 229.
12 NELSON D M, BRZEZINSKI M A, SIGMON D E, et al. A seasonal progression of Si limitation in the Pacific sector of the Southern Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 48(19/20): 3 973-3 995.
13 KRAUSE J W, DARROW E S, PICKERING R A, et al. Reactive silica fractions in coastal lagoon sediments from the northern Gulf of Mexico[J]. Continental Shelf Research, 2017, 151: 8-14.
14 MALDONADO M, LóPEZ-ACOSTA M, BEAZLEY L, et al. Cooperation between passive and active silicon transporters clarifies the ecophysiology and evolution of biosilicification in sponges[J]. Science Advances, 2020, 6(28): eaba9322.
15 YANG Weihua, HAO Qian, XIA Shaopan, et al. Silicon cycle in lake-watershed system and its effects on carbon and nutrient cycles[J]. Chinese Journal of Ecology, 2018, 37(3): 624-633.
15 杨伟华, 郝倩, 夏少攀, 等. 湖泊—流域系统硅循环及其对碳和养分循环的影响[J]. 生态学杂志, 2018, 37(3): 624-633.
16 PAN Wenjie, YANG Xiaomin, ZHANG Xiaodong, et al. Advances in study of phytolith carbon sequestration in terrestrial ecosystems of China[J]. Advances in Earth Science, 2017, 32(8): 859-866.
16 潘文杰, 杨孝民, 张晓东, 等. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
17 XU Zijuan, ZUO Xinxin, FAN Bailing, et al. Advances in geochemical study of phytolith occluded carbon[J]. Advances in Earth Science, 2017, 32(2): 151-159.
17 许子娟, 左昕昕, 范百龄, 等. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
18 CABAL A, LEGRAND S, van den BRIL B, et al. Study of the uniformity of aerosol filters by scanning MA-XRF[J]. X-Ray Spectrometry, 2017, 46(5): 461-466.
19 JI Ang, ZHENG Nan, WANG Hejin, et al. Determination of composition in PM10 aerosols by high-energy polarized energy-dispersive X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2011, 30(5): 528-535.
19 吉昂, 郑南, 王河锦, 等. 高能偏振能量色散—X射线荧光光谱法测定PM10大气颗粒物的组成[J]. 岩矿测试, 2011, 30(5): 528-535.
20 YATKIN S, TRZEPLA K, WHITE W H, et al. Development of single-compound reference materials on polytetrafluoroethylene filters for analysis of aerosol samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2020, 171: 105948.
21 LU D W, LIU Q, YU M, et al. Natural silicon isotopic signatures reveal the sources of airborne fine particulate matter[J]. Environmental Science & Technology, 2018, 52(3): 1 088-1 095.
22 BUTLER O T, CAIRNS W R L, COOK J M, et al. Atomic spectrometry update—a review of advances in environmental analysis[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(1): 8-56.
23 GONZáLEZ L T, RODRíGUEZ F E L, SáNCHEZ-DOMíNGUEZ M, et al. Chemical and morphological characterization of TSP and PM2.5 by SEM-EDS, XPS and XRD collected in the metropolitan area of Monterrey, Mexico[J]. Atmospheric Environment, 2016, 143: 249-260.
24 XUE Huaqin. Levels, chemical composition, source identification and pollution assessment of atmospheric particulate matter in Hefei City, China[D]. Hefei: University of Science and Technology of China, 2019.
24 薛骅骎. 大气颗粒物的化学组成、来源识别和污染评价研究: 以合肥市为例[D]. 合肥: 中国科学技术大学, 2019.
25 ZORDAN C A, WANG S Y, JOHNSTON M V. Time-resolved chemical composition of individual nanoparticles in urban air[J]. Environmental Science & Technology, 2008, 42(17): 6 631-6 636.
26 ROSS P M, JOHNSTON M V. Trapping charged nanoparticles in the Nano Aerosol Mass Spectrometer (NAMS)[J]. International Journal of Mass Spectrometry, 2012, 311: 64-71.
27 BZDEK B R, HORAN A J, PENNINGTON M R, et al. Silicon is a frequent component of atmospheric nanoparticles[J]. Environmental Science & Technology, 2014, 48(19): 11 137-11 145.
28 SAVAGE P S, ARMYTAGE R M G, GEORG R B, et al. High temperature silicon isotope geochemistry[J]. Lithos, 2014, 190/191: 500-519.
29 LI Shengrong, XU Hong, SHEN Junfeng,et al. Crystallography & mineralogy[M]. Beijing: Geological Publishing House, 2008.
29 李胜荣,许虹,申俊峰,等. 结晶学与矿物学[M]. 北京: 地质出版社, 2008.
30 ZHU Xiaomin, ZHANG Jikai. The fundamentals of organosilicon material[M]. Beijing: Chemical Industry Press, 2013.
30 朱晓敏, 章基凯. 有机硅材料基础[M]. 北京: 化学工业出版社, 2013.
31 SUTTON J N, ANDRE L, CARDINAL D, et al. A review of the stable isotope bio-geochemistry of the global silicon cycle and its associated trace elements [J]. Frontiers in Earth Science, 2018, 5. DOI: 10.3389/feart.2017.00112 .
32 NELSON D M, TRéGUER P, BRZEZINSKI M A, et al. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles, 1995, 9(3): 359-372.
33 TRéGUER P, BOWLER C, MORICEAU B, et al. Influence of diatom diversity on the ocean biological carbon pump[J]. Nature Geoscience, 2018, 11(1): 27-37.
34 STEENLAND K, WARD E. Silica: a lung carcinogen[J]. CA: A Cancer Journal for Clinicians, 2014, 64(1): 63-69.
35 NIU H Y, HU W, PIAN W, et al. Characteristics of dry deposited mineral particles associated with weather conditions in the adjacent sea areas of East China during a cruise in spring 2011[J]. Particuology, 2016, 28: 86-92.
36 LI W J, SHAO L Y, SHI Z B, et al. Mixing state and hygroscopicity of dust and haze particles before leaving Asian continent[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(2): 1 044-1 059.
37 HU W, NIU H Y, ZHANG D Z, et al. Insights into a dust event transported through Beijing in spring 2012: morphology, chemical composition and impact on surface aerosols[J]. Science of the Total Environment, 2016, 565: 287-298.
38 WANG Z H, HU W, NIU H Y, et al. Variations in physicochemical properties of airborne particles during a heavy haze-to-dust episode in Beijing[J]. The Science of the Total Environment, 2021, 762: 143081.
39 UEMATSU M, DUCE R A, PROSPERO J M, et al. Transport of mineral aerosol from Asia over the north Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 1983, 88(C9): 5 343-5 352.
40 MERRILL J T, UEMATSU M, BLECK R. Meteorological analysis of long range transport of mineral aerosols over the North Pacific[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D6): 8 584-8 598.
41 ANDREAE M O, CHARLSON R J, BRUYNSEELS F, et al. Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols[J]. Science, 1986, 232(4 758): 1 620-1 623.
42 BEIN K J. Speciation of size-resolved individual ultrafine particles in Pittsburgh, Pennsylvania[J]. Journal of Geophysical Research, 2005, 110(D7): D07S05.
43 WANG D G, NORWOOD W, ALAEE M, et al. Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment[J]. Chemosphere, 2013, 93(5): 711-725.
44 ROGER A. Kinetics of the gas-phase reactions of a series of organosilicon compounds with hydroxyl and nitrate radicals and ozone at 297±2K [J]. Environmental Science & Technology, 1991, 25(5): 863-866.
45 WU Y, JOHNSTON M V. Aerosol formation from OH oxidation of the Volatile cyclic Methyl Siloxane (cVMS) decamethylcyclopentasiloxane[J]. Environmental Science & Technology, 2017, 51(8): 4 445-4 451.
46 BALDUCCI C, PERILLI M, ROMAGNOLI P, et al. New developments on emerging organic pollutants in the atmosphere[J]. Environmental Science and Pollution Research, 2012, 19(6): 1 875-1 884.
47 YUCUIS R A, STANIER C O, HORNBUCKLE K C. Cyclic siloxanes in air, including identification of high levels in Chicago and distinct diurnal variation[J]. Chemosphere, 2013, 92(8): 905-910.
48 BERNER R A. The rise of plants and their effect on weathering and atmospheric CO2 [J]. Science, 1997, 276(5 312): 544-546.
49 GAILLARDET J, DUPRé B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30.
50 BASILE-DOELSCH I. Si stable isotopes in the Earth’s surface: a review[J]. Journal of Geochemical Exploration, 2006, 88(1/2/3): 252-256.
51 BLECKER S W, MCCULLEY R L, CHADWICK O A, et al. Biologic cycling of silica across a grassland bioclimosequence[J]. Global Biogeochemical Cycles, 2006, 20(3): B3023-1.
52 SONG Z L, MCGROUTHER K, WANG H L. Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems[J]. Earth-Science Reviews, 2016, 158: 19-30.
53 SONG Z L, LIU H Y, STR?MBERG C A E, et al. Phytolith carbon sequestration in global terrestrial biomes[J]. Science of the Total Environment, 2017, 603/604: 502-509.
54 SONG Z L, LIU C Q, MüLLER K, et al. Silicon regulation of soil organic carbon stabilization and its potential to mitigate climate change[J]. Earth-Science Reviews, 2018, 185: 463-475.
55 FISHMAN J, MINNIS P, REICHLE H G. Use of satellite data to study tropospheric ozone in the tropics[J]. Journal of Geophysical Research, 1986, 91(D13): 14451.
56 CRUTZEN P J, HEIDT L E, KRASNEC J P, et al. Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS[J]. Nature, 1979, 282(5 736): 253-256.
57 LELIEVELD J, CRUTZEN P J, RAMANATHAN V, et al. The Indian Ocean experiment: widespread air pollution from south and Southeast Asia[J]. Science, 2001, 291(5 506): 1 031-1 036.
58 WANG M X, WINCHESTER J W, WEIXIU L, et al. Meteorological and chemical controls on the vertical distribution of Beijing summer coarse and fine aerosols[J]. Advances in Atmospheric Sciences, 1986, 3(4): 432-442.
59 ZHANG Z Q, FRIEDLANDER S K. A comparative study of chemical databases for fine particle Chinese aerosols[J]. Environmental Science & Technology, 2000, 34(22): 4 687-4 694.
60 LU D W, TAN J H, YANG X Z, et al. Unraveling the role of silicon in atmospheric aerosol secondary formation: a new conservative tracer for aerosol chemistry[J]. Atmospheric Chemistry and Physics, 2019, 19(5): 2 861-2 870.
61 ZHUANG G, YI Z, DUCE R A, et al. Link between iron and sulphur cycles suggested by detection of Fe(n) in remote marine aerosols[J]. Nature, 1992, 355(6 360): 537-539.
62 ZHUANG Guoshun, GUO Jinghua, YUAN Hui, et al. Link between iron and sulphur cycles suggested by detection of Fe(n) in remote marine aerosols [J]. Chinese Science Bulletin, 2003, 48(4): 313-319.
62 庄国顺, 郭敬华, 袁蕙, 等. 大气海洋物质交换中的铁硫耦合反馈机制[J]. 科学通报, 2003, 48(4): 313-319.
63 SAMIKSHA S, SUNDER R R. A note on unusual Si/Al ratios in PM10 and PM2.5 road dust at several locations in India[J]. Chemosphere, 2017, 181: 376-381.
64 ZHAO Q, HE K B, RAHN K A, et al. Using Si depletion in aerosol to identify the sources of crustal dust in two Chinese megacities[J]. Atmospheric Environment, 2010, 44(21/22): 2 615-2 624.
65 RAHN K A. Silicon and aluminum in atmospheric aerosols: crust-air fractionation?[J]. Atmospheric Environment (1967), 1976, 10(8): 597-601.
66 MAKRA L, BORBéLY-KISS I, KOLTAY E, et al. Enrichment of desert soil elements in Takla Makan dust aerosol[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2002, 189(1/2/3/4): 214-220.
67 KADOWAKI S. Silicon and aluminum in urban aerosols for characterization of atmospheric soil particles in the Nagoya area[J]. Environmental Science & Technology, 1979, 13(9): 1 130-1 133.
68 HUA Lei, GUO Jing, XU Ziyou, et al. Analysis of PM10 source profiles in Beijing[J]. Environmental Monitoring in China, 2006, 22(6): 64-71.
68 华蕾, 郭婧, 徐子优, 等. 北京市主要PM10排放源成分谱分析[J]. 中国环境监测, 2006, 22(6): 64-71.
69 COOPER J A, FRAZIE C A, HOUCK J E. Seattle-Tacoma Aerosol Characterization Study (STACS)[M]. Draft Final Report to the Puget Sound Air Pollution Control Agency by NEA, Inc., 1983.
70 BI X H, FENG Y C, WU J H, et al. Source apportionment of PM10 in six cities of northern China[J]. Atmospheric Environment, 2007, 41(5): 903-912.
71 LI Yu, WEI Chaofu. Distribution characteristics of soil elements and its pedogenetics in the Three Gorges Reservoir district[J]. Chinese Agricultural Science Bulletin, 2007, 23(12): 356-361.
71 李渝, 魏朝富. 三峡库区土壤元素分布特征及其发生学意义[J]. 中国农学通报, 2007, 23(12): 356-361.
72 CAO J J, CHOW J C, WATSON J G, et al. Size-differentiated source profiles for fugitive dust in the Chinese Loess Plateau[J]. Atmospheric Environment, 2008, 42(10): 2 261-2 275.
73 KONG S F, JI Y Q, LU B, et al. Characterization of PM10 source profiles for fugitive dust in Fushun—a city famous for coal[J]. Atmospheric Environment, 2011, 45(30): 5 351-5 365.
74 FENG Y C, XUE Y H, CHEN X H, et al. Source apportionment of ambient total suspended particulates and coarse particulate matter in urban areas of Jiaozuo, China[J]. Journal of the Air & Waste Management Association, 2007, 57(5): 561-575.
75 HO K F, LEE S C, CHOW J C, et al. Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong[J]. Atmospheric Environment, 2003, 37(8): 1 023-1 032.
76 SUN L, WU L H, DING T P, et al. Silicon isotope fractionation in rice plants, an experimental study on rice growth under hydroponic conditions[J]. Plant and Soil, 2008, 304(1/2): 291-300.
77 FRINGS P J, CLYMANS W, FONTORBE G, et al. The continental Si cycle and its impact on the ocean Si isotope budget[J]. Chemical Geology, 2016, 425: 12-36.
78 YANG J L, ZHANG G L. Si cycling and isotope fractionation: implications on weathering and soil formation processes in a typical subtropical area[J]. Geoderma, 2019, 337: 479-490.
79 HENDRY K R, BRZEZINSKI M A. Using silicon isotopes to understand the role of the Southern Ocean in modern and ancient biogeochemistry and climate[J]. Quaternary Science Reviews, 2014, 89: 13-26.
80 BAYON G, DELVIGNE C, PONZEVERA E, et al. The silicon isotopic composition of fine-grained river sediments and its relation to climate and lithology[J]. Geochimica et Cosmochimica Acta, 2018, 229: 147-161.
81 BARONAS J J, TORRES M A, WEST A J, et al. Ge and Si isotope signatures in rivers: a quantitative multi-proxy approach[J]. Earth and Planetary Science Letters, 2018, 503: 194-215.
82 PRYER H V, HATTON J E, WADHAM J L, et al. The effects of glacial cover on riverine silicon isotope compositions in Chilean Patagonia [J]. Frontiers in Earth Science, 2020, 8: 368.
83 ZHANG Z L, CAO Z M, GRASSE P, et al. Dissolved silicon isotope dynamics in large river estuaries[J]. Geochimica et Cosmochimica Acta, 2020, 273: 367-382.
84 GAO Jianfei, DING Tiping, TIAN Shihong, et al. Silicon isotope compositions of suspended matter in the Yellow River, China, and its significance in geological environment[J]. Acta Geologica Sinica, 2011, 85(10): 1 613-1 628.
84 高建飞, 丁悌平, 田世洪, 等. 黄河水及其悬浮物硅同位素组成的变化特征及其地质环境意义[J]. 地质学报, 2011, 85(10): 1 613-1 628.
85 DING T, WAN D, WANG C, et al. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 205-216.
86 YANG X Z, LU D W, TAN J H, et al. Two-dimensional silicon fingerprints reveal dramatic variations in the sources of particulate matter in Beijing during 2013-2017[J]. Environmental Science & Technology, 2020, 54(12): 7 126-7 135.
87 YANG X Z, LIU X, ZHANG A Q, et al. Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning[J]. Nature Communications, 2019, 10(1): 1620.
88 AKIMOTO H. Global air quality and pollution[J]. Science, 2003, 302(5 651): 1 716-1 719.
89 LELIEVELD J, DENTENER F J. What controls tropospheric ozone? [J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D3): 3 531-3 551.
90 PARRINGTON J R, ZOLLER W H, ARAS N K. Asian dust: seasonal transport to the Hawaiian Islands[J]. Science, 1983, 220(4 593): 195-197.
91 ZDANOWICZ C, HALL G, VAIVE J, et al. Asian dustfall in the St. Elias Mountains, Yukon, Canada[J]. Geochimica et Cosmochimica Acta, 2006, 70(14): 3 493-3 507.
92 DUCE R A, UNNI C K, RAY B J, et al. Long-range atmospheric transport of soil dust from Asia to the tropical north Pacific: temporal variability[J]. Science, 1980, 209(4 464): 1 522-1 524.
93 PROSPERO J M. Long-term measurements of the transport of African mineral dust to the southeastern United States: implications for regional air quality[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D13): 15 917-15 927.
94 GATZ D F, PROSPERO J M. A large silicon-aluminum aerosol plume in Central Illinois: north African desert dust?[J]. Atmospheric Environment, 1996, 30(22): 3 789-3 799.
95 van der DOES M, KNIPPERTZ P, ZSCHENDERLEIN P, et al. The mysterious long-range transport of giant mineral dust particles[J]. Science Advances, 2018, 4(12): eaau2768.
96 RYDER C L, HIGHWOOD E J, ROSENBERG P D, et al. Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign[J]. Atmospheric Chemistry and Physics, 2013, 13(1): 303-325.
97 NEWELL R E, EVANS M J. Seasonal changes in pollutant transport to the North Pacific: the relative importance of Asian and European sources[J]. Geophysical Research Letters, 2000, 27(16): 2 509-2 512.
98 SCHICKER I, RADANOVICS S, SEIBERT P. Origin and transport of Mediterranean moisture and air[J]. Atmospheric Chemistry and Physics, 2010, 10(11): 5 089-5 105.
99 ZHANG J, YUAN Q, LIU L, et al. Trans-regional transport of haze particles from the North China plain to Yangtze River Delta during winter[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(8). DOI: 10.1029/2020JD033778 .
100 XING Jianwei, SONG Jinming, YUAN Huamao, et al. Dry deposition characteristics of atmospheric reactive silicate at Jiaozhou Bay and its potential ecological effects on marine ecosystem[J]. Acta Ecologica Sinica, 2020, 40(9): 3 096-3 104.
100 邢建伟, 宋金明, 袁华茂, 等. 胶州湾大气活性硅酸盐干沉降特征及其生态效应[J]. 生态学报, 2020, 40(9): 3 096-3 104.
101 EPSTEIN E. Silicon[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 641-664.
102 LEWIN J, REIMANN B F. Silicon and plant growth[J]. Annual Review of Plant Physiology, 1969, 20: 289-304.
103 FOY C D, CHANEY R L, WHITE M C. The physiology of metal toxicity in plants[J]. Annual Review of Plant Physiology, 1978, 29: 511-566.
104 EPSTEIN E. The anomaly of silicon in plant biology[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(1): 11-17.
105 ENGSTR?M E, RODUSHKIN I, ?HLANDER B, et al. Silicon isotopic composition of boreal forest vegetation in Northern Sweden[J]. Chemical Geology, 2008, 257(3/4): 247-256.
106 TRéGUER P, NELSON D M, van BENNEKOM A J, et al. The silica balance in the world ocean: a reestimate[J]. Science, 1995, 268(5 209): 375-379.
107 ZHANG J. Dissolved silicate in coastal marine rainwaters: comparison between the Yellow Sea and the East China Sea on the impact and potential link with primary production[J]. Journal of Geophysical Research, 2005, 110(D16): D16304.
108 BI Yanfeng. Atmospheric nutrient deposition at the East China coast and its impact on marine primary production [D]. Qingdao: Ocean University of China, 2006.
108 毕言锋. 中国东部沿海的大气营养盐干、湿沉降及其对海洋初级生产力的影响[D]. 青岛: 中国海洋大学, 2006.
109 JIANG Xiaolu. Atmospheric dry and wet deposition of nutrient in East China Sea and Yellow Sea and it’s impact on marine primary production [D]. Qingdao: Ocean University of China, 2009.
109 姜晓璐. 东、黄海的大气干、湿沉降及其对海洋初级生产力的影响[D]. 青岛:中国海洋大学, 2009.
110 ZHU Yumei. Nutrients in atmospheric deposition of the Yellow and East China Seas [D]. Qingdao: Ocean University of China, 2011.
110 朱玉梅. 东、黄海大气沉降中营养盐的研究[D]. 青岛:中国海洋大学, 2011.
111 REDFIELD A C, KETCHUM B H, RICHARDS F A. The influence of organisms on the composition of sea water[M]//Hill M N. The sea. Vol 2. New York: Interscience, 1963.
112 BARTOLI G, MIGON C, LOSNO R. Atmospheric input of dissolved inorganic phosphorus and silicon to the coastal northwestern Mediterranean Sea: fluxes, variability and possible impact on phytoplankton dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(11): 2 005-2 016.
113 CHOI H S, ASHITATE Y, LEE J H, et al. Rapid translocation of nanoparticles from the lung airspaces to the body[J]. Nature Biotechnology, 2010, 28(12): 1 300-1 303.
114 KIM K H, KABIR E, KABIR S. A review on the human health impact of airborne particulate matter[J]. Environment International, 2015, 74: 136-143.
115 OBERD?RSTER G, OBERD?RSTER E, OBERD?RSTER J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles[J]. Environmental Health Perspectives, 2005, 113(7): 823-839.
116 KREYLING W G, HIRN S, M?LLER W, et al. Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size[J]. ACS Nano, 2014, 8(1): 222-233.
117 ZOU H, WU S S, SHEN J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications[J]. Chemical Reviews, 2008, 108(9): 3 893-3 957.
118 KELLER A A, LAZAREVA A. Predicted releases of engineered nanomaterials: from global to regional to local[J]. Environmental Science & Technology Letters, 2014, 1(1): 65-70.
119 GUO Z C, XING R R, ZHAO M H, et al. Controllable engineering and functionalizing of nanoparticles for targeting specific proteins towards biomedical applications (Adv. Sci. 24/2021)[J]. Advanced Science, 2021, 8(24): 2170164.
120 KNOPP D, TANG D P, NIESSNER R. Review: bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles[J]. Analytica Chimica Acta, 2009, 647(1): 14-30.
121 YAMASHITA K, YOSHIOKA Y, HIGASHISAKA K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice[J]. Nature Nanotechnology, 2011, 6(5): 321-328.
122 CALVERT G M, RICE F L, BOIANO J M, et al. Occupational silica exposure and risk of various diseases: an analysis using death certificates from 27 states of the United States[J]. Occupational and Environmental Medicine, 2003, 60(2): 122-129.
123 LIU X T, WEI W, LIU Z X, et al. Serum apolipoprotein A-I depletion is causative to silica nanoparticles-induced cardiovascular damage[J]. PNAS, 2021, 118(44). DOI: 10.1073/pnas.2108131118 .
124 PAVAN C, SANTALUCIA R, LEINARDI R, et al. Nearly free surface silanols are the critical molecular moieties that initiate the toxicity of silica particles[J]. PNAS, 2020, 117(45): 27 836-27 846.
125 WIGLE D T, ARBUCKLE T E, TURNER M C, et al. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2008, 11(5/6): 373-517.
Outlines

/