Relationship Between Compound-Specific δD of Marine Algae Biomarkers and Surface Seawater Salinity and Its Implication for Paleoceanography Reconstruction
Received date: 2021-06-25
Revised date: 2021-10-09
Online published: 2022-04-28
Supported by
the National Natural Science Foundation of China "Study on the relationship between hydrogen isotope of marine algae biomarkers and seawater salinity off the Yangtze River Estuary"(41776049);"Late Oligocene-Mid-Miocene precipitation evolution history in low latitudes of East Asia and its global impact"(41876042)
Compound-specific D/H ratios of lipid biomarkers contain valuable environmental information. The δD values of biomarkers represented by long-chain alkenones, dinosterols, and fatty acids have been increasingly applied to reconstruct paleo-Sea-Surface Salinity (SSS). However, studies over the past two decades have shown that the δD of marine algae biomarkers is sensitive to many factors, such as salinity, species, temperature, and light intensity. Here, we focused on the impact of SSS on the δD of marine algae lipids and summarized the relationships between lipid δD and salinity from culture experiments and field studies. Then, based on the successful reconstruction of paleo-salinity with lipid δD, we put forward the problems that need to be addressed when applying it as a paleo-SSS proxy. It is hoped tha t this study will help us better understand the application potential of lipid δD and provide more accurate and detailed information for δD research.
Jiayuan JIA , Juan HE , Bingbing WEI , Guodong JIA , Li LI . Relationship Between Compound-Specific δD of Marine Algae Biomarkers and Surface Seawater Salinity and Its Implication for Paleoceanography Reconstruction[J]. Advances in Earth Science, 2022 , 37(4) : 392 -406 . DOI: 10.11867/j.issn.1001-8166.2021.119
1 | ROSMAN K J R, TAYLOR P D P. Isotopic compositions of the elements 1997[J]. Journal of Physical and Chemical Reference Data, 1998, 27(6): 1 275-1 287. |
2 | SESSIONS A L, SYLVA S P, SUMMONS R E, et al. Isotopic exchange of carbon-bound hydrogen over geologic timescales[J]. Geochimica et Cosmochimica Acta, 2004, 68(7): 1 545-1 559. |
3 | SCHIMMELMANN A, SESSIONS A L, MASTALERZ M. Hydrogen isotopic (D/H) composition of organic matter during diagenesis and thermal maturation[J]. Annual Reviews of Earth and Planetary Sciences, 2006, 34: 501-533. |
4 | SACHSE D, BILLAULT I, BOWEN G J, et al. Molecular Paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms[J]. Annual Review of Earth and Planetary Sciences, 2012, 40(1): 221-249. |
5 | EGLINTON T I, EGLINTON G. Molecular proxies for paleoclimatology[J]. Earth and Planetary Science Letters, 2008, 275(1/2): 1-16. |
6 | HOLTVOETH J, WHITESIDE J H, ENGELS S, et al. The paleolimnologist's guide to compound-specific stable isotope analysis-an introduction to principles and applications of CSIA for Quaternary lake sediments[J]. Quaternary Science Reviews, 2019, 207:101-133. |
7 | HUANG Xianyu, MEYERS P A. Assessing paleohydrologic controls on the hydrogen isotope compositions of leaf wax n-alkanes in Chinese peat deposits[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516: 354-363. |
8 | SESSIONS A L. Factors controlling the deuterium contents of sedimentary hydrocarbons[J]. Organic Geochemistry, 2016, 96: 43-64. |
9 | ZHANG Jie, JIA Guodong. Application of plant-derived n-alkanes and their compound-specific hydrogen isotopic composition in paleoenvironment research[J]. Advances in Earth Science, 2009, 24(8): 874-881. |
9 | 张杰, 贾国东. 植物正构烷烃及其单体氢同位素在古环境研究中的应用[J]. 地球科学进展, 2009, 24(8): 874-881. |
10 | YUAN Zineng, XING Lei, ZHANG Hailong, et al. Progress of biomarker stable hydrogen isotope and its application to marine paleoenvironmental reconstruction[J]. Advances in Earth Science, 2012, 27(3): 276-283. |
10 | 袁子能, 邢磊, 张海龙, 等. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283. |
11 | HOU J Z, D'ANDREA W J, HUANG Y S. Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and experimental assessments[J]. Geochimica et Cosmochimica Acta, 2008, 72(14): 3 503-3 517. |
12 | RAO Z G, ZHU Z Y, JIA G D, et al. Compound specific δD values of long chain n-alkanes derived from terrestrial higher plants are indicative of the δD of meteoric waters: evidence from surface soils in eastern China[J]. Organic Geochemistry, 2009, 40(8): 922-930. |
13 | LIU Weiguo, YANG Hong, HUANG Yongsong, et al. Hydrogen isotopic of n-alkanes extracted from terrestrial plants and its paleoenvironmental implications[J]. Acta Geoscientica Sinica, 2005, 26(B09):233-234. |
13 | 刘卫国, 杨洪, 黄永松, 等. 陆地植物有机分子化合物氢同位素组成及其古环境意义[J]. 地球学报, 2005, 26(B09): 233-234. |
14 | DUAN Yi, YAO Jingli, WU Yingzhong, et al. Hydrogen isotopic composition of n-alkanes in sediments from freshwater lake, the low latitude region of China:implications for organic matter source and environment[J]. Acta Geologica Sinica, 2017, 91(8): 1 894-1 904. |
14 | 段毅, 姚泾利, 吴应忠, 等. 低纬度淡水湖沉积物中正构烷烃氢同位素组成特征及其有机质源和环境指示意义[J]. 地质学报, 2017, 91(8): 1 894-1 904. |
15 | LIU Hu, YANG Hong, CAO Yunning, et al. Compound-specific δD and its hydrological and environmental implication in the lakes on the Tibetan Plateau[J]. Science China: Earth Sciences, 2018, 48(6): 765-777. |
15 | 刘虎, 杨洪, 曹蕴宁, 等. 青藏高原地区湖泊正构烷烃有机单体氢同位素组成及其水文与环境应用[J]. 中国科学: 地球科学, 2018, 48(6): 778-791. |
16 | LIU Hu, LIU Zhonghui, ZHAO Cheng, et al. n-alkyl lipid concentrations and distributions in aquatic plants and their individual δD variations[J]. Science China: Earth Sciences, 2019, 49(9): 1 441-1 452. |
16 | 刘虎, 柳中晖, 赵成, 等. 水生植物烷基脂类含量和分布特征及其单体氢同位素组成[J]. 中国科学: 地球科学, 2019, 49(9): 1 441-1 452. |
17 | SESSIONS A L, BURGOYNE T W, SCHIMMELMANN A, et al. Fractionation of hydrogen isotopes in lipid biosynthesis[J]. Organic Geochemistry, 1999, 30(9): 1 193-1 200. |
18 | LI C, SESSIONS A L, KINNAMAN F S, et al. Hydrogen-isotopic variability in lipids from Santa Barbara Basin sediments[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4 803-4 823. |
19 | ZHANG Zhaohui, SACHS J P. Hydrogen isotope fractionation in freshwater algae: I. variations among lipids and species[J]. Organic Geochemistry, 2007, 38(4): 582-608. |
20 | SCHOUTEN S, OSSEBAAR J, SCHREIBER K, et al. The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica [J]. Biogeosciences, 2006, 3(1): 113-119. |
21 | SACHSE D, SACHS J P. Inverse relationship between D/H fractionation in cyanobacterial lipids and salinity in Christmas Island saline ponds[J]. Geochimica et Cosmochimica Acta, 2008, 72(3): 793-806. |
22 | SACHS J P, SCHWAB V F. Hydrogen isotopes in dinosterol from the Chesapeake Bay estuary[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 444-459. |
23 | NELSON D B, SACHS J P. The influence of salinity on D/H fractionation in dinosterol and brassicasterol from globally distributed saline and hypersaline lakes[J]. Geochimica et Cosmochimica Acta, 2014, 133: 325-339. |
24 | M'BOULE D, CHIVALL D, SINKE-SCHOEN D, et al. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae[J]. Geochimica et Cosmochimica Acta, 2014, 130: 126-135. |
25 | SACHS J P, MALONEY A E, GREGERSEN J, et al. Effect of salinity on 2H/1H fractionation in lipids from continuous cultures of the coccolithophorid Emiliania huxleyi [J]. Geochimica et Cosmochimica Acta, 2016, 189: 96-109. |
26 | MALONEY A E, SHINNEMAN A L C, HEMEON K, et al. Exploring lipid 2H/1H fractionation mechanisms in response to salinity with continuous cultures of the diatom Thalassiosira pseudonana [J]. Organic Geochemistry, 2016, 101: 154-165. |
27 | WEISS G M, CHIVALL D, KASPER S, et al. Impact of metabolic pathways and salinity on the hydrogen isotope ratios of haptophyte lipids[J]. Biogeosciences Discussions, 2019. DOI:org/10.5194/bg-2019-147 . |
28 | LATTAUD J, ERDEM Z, WEISS G M, et al. Hydrogen isotopic ratios of long-chain diols reflect salinity[J]. Organic Geochemistry, 2019, 137: 103904. |
29 | ZHANG Z H, SACHS J P, MARCHETTI A. Hydrogen isotope fractionation in freshwater and marine algae: II. temperature and nitrogen limited growth rate effects[J]. Organic Geochemistry, 2009, 40(3): 428-439. |
30 | WOLHOWE M D, PRAHL F G, PROBERT I, et al. Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes[J]. Biogeosciences, 2009, 6(8): 1 681-1 694. |
31 | CHIVALL D, M'BOULE D, SINKE-SCHOEN D, et al. Impact of salinity and growth phase on alkenone distributions in coastal haptophytes[J]. Organic Geochemistry, 2014, 67: 31-34. |
32 | SACHS J P, KAWKA O E. The influence of growth rate on 2H/1H fractionation in continuous cultures of the coccolithophorid Emiliania huxleyi and the diatom Thalassiosira pseudonana [J]. PLoS ONE, 2015, 10(11): e0141643. |
33 | van der MEER M T J, BENTHIEN A, FRENCH K L, et al. Large effect of irradiance on hydrogen isotope fractionation of alkenones in Emiliania huxleyi [J]. Geochimica et Cosmochimica Acta, 2015, 160: 16-24. |
34 | SACHS J P, MALONEY A E, GREGERSEN J. Effect of light on 2H/1H fractionation in lipids from continuous cultures of the diatom Thalassiosira pseudonana [J]. Geochimica et Cosmochimica Acta, 2017, 209: 204-215. |
35 | WEISS G M, PFANNERSTILL E Y, SCHOUTEN S, et al. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi [J]. Biogeosciences, 2017, 14(24): 5 693-5 704. |
36 | GOULD J, KIENAST M, DOWD M, et al. An open-ocean assessment of alkenone δD as a paleo-salinity proxy[J]. Geochimica et Cosmochimica Acta, 2019, 246: 478-497. |
37 | WEISS G M, SCHOUTEN S, SINNINGHE D J S, et al. Constraining the application of hydrogen isotopic composition of alkenones as a salinity proxy using marine surface sediments[J]. Geochimica et Cosmochimica Acta, 2019, 250: 34-48. |
38 | SCHWAB V F, SACHS J P. Hydrogen isotopes in individual alkenones from the Chesapeake Bay estuary[J]. Geochimica et Cosmochimica Acta, 2011, 75(23): 7 552-7 565. |
39 | XING Lei, SACHS J P, ZHANG Hailong, et al. Hydrogen isotopes in palmitic and stearic acids in suspended particles from the Changjiang River estuary[J]. Science China Earth Sciences, 2016, 59(5): 981-988. |
40 | SAUER P E, EGLINTON T I, HAYES J M, et al. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions [J]. Geochimica et Cosmochimica Acta, 2001, 65(2): 213-222. |
41 | PAUL H A. Application of novel stable isotope methods to reconstruct paleoenvironments: compound-specific hydrogen isotopes and pore-water oxygen isotopes[D]. Zürich: Swiss Federal Institute of Technology, 2002. |
42 | ENGLEBRECHT A C, SACHS J P. Determination of sediment provenance at drift sites using hydrogen isotopes and unsaturation ratios in alkenones [J]. Geochimica et Cosmochimica Acta, 2005, 69(17): 4 253-4 265. |
43 | HUANG Yongsong, SHUMAN B, WANG Yi, et al. Hydrogen isotope ratios of palmitic acid in lacustrine sediments record late Quaternary climate variations[J]. Geology, 2002, 30(12): 1103. |
44 | HAYES J M. Fractionation of carbon and hydrogen isotopes in biosynthetic processes[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 225-277. |
45 | SCHMIDT H L, WERNER R A, EISENREICH W. Systematics of 2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways[J]. Phytochemistry Reviews, 2003, 2(1/2): 61-85. |
46 | HEINZELMANN S M, CHIVALL D, M'BOULE D, et al. Comparison of the effect of salinity on the D/H ratio of fatty acids of heterotrophic and photoautotrophic microorganisms[J]. Microbiology Letters, 2015, 362(10): fnv065. |
47 | ZHANG X N, GILLESPIE A L, SESSIONS A L. Large D/H variations in bacterial lipids reflect central metabolic pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(31): 12 580-12 586. |
48 | WOLHOWE M D, PRAHL F G, LANGER G, et al. Alkenone δD as an ecological indicator: a culture and field study of physiologically-controlled chemical and hydrogen-isotopic variation in C37 alkenones[J]. Geochimica et Cosmochimica Acta, 2015, 162(162): 166-182. |
49 | WOLFSHORNDL M, DANFORD R, SACHS J P. 2H/1H fractionation in microalgal lipids from the North Pacific Ocean: growth rate and irradiance effects[J]. Geochimica et Cosmochimica Acta, 2019, 246: 317-338. |
50 | D'ANDREA W J, LIU Z H, da ALEXANDRE M, et al. An efficient method for isolating individual long-chain alkenones for compound-specific hydrogen isotope analysis[J]. Analytical Chemistry, 2007, 79(9): 3 430-3 435. |
51 | van der MEER M T J, BENTHIEN A, BIJMA J, et al. Alkenone distribution impacts the hydrogen isotopic composition of the C37:2 and C37:3 alkan-2-ones in Emiliania huxleyi [J]. Geochimica et Cosmochimica Acta, 2013, 111: 162-166. |
52 | CHIKARAISHI Y, SUZUKI Y, NARAOKA H. Hydrogen isotopic fractionations during desaturation and elongation associated with polyunsaturated fatty acid biosynthesis in marine macroalgae[J]. Phytochemistry, 2004, 65(15): 2 293-2 300. |
53 | RONTANI J F, JAMESON I, CHRISTODOULOU S, et al. Free radical oxidation (autoxidation) of alkenones and other lipids in cells of Emiliania huxleyi [J]. Phytochemistry, 2007, 68(6): 913-924. |
54 | WEISS G M, ROEPERT A, MIDDELBURG J J, et al. Hydrogen isotope fractionation response to salinity and alkalinity in a calcifying strain of Emiliania huxleyi [J]. Organic Geochemistry, 2019, 134: 62-65. |
55 | SACHS J P, STEIN R, MALONEY A E, et al. An Arctic Ocean paleosalinity proxy from δ 2H of palmitic acid provides evidence for deglacial Mackenzie River flood events[J]. Quaternary Science Reviews, 2018, 198: 76-90. |
56 | NELSON D B, SACHS J P. The influence of salinity on D/H fractionation in alkenones from saline and hypersaline lakes in continental North America[J]. Organic Geochemistry, 2014, 66: 38-47. |
57 | H?GGI C, CHIESSI C M, SCHEFU? E. Testing the D/H ratio of alkenones and palmitic acid as salinity proxies in the Amazon Plume[J]. Biogeosciences, 2015, 12(23): 7 239-7 249. |
58 | GAT J R. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Review of Earth and Planetary Sciences, 1996, 24(1):225-262. |
59 | SACHS J P, SACHSE D, SMITTENBERG R H, et al. Southward movement of the Pacific intertropical convergence zone AD?1400-1850[J]. Nature Geoscience, 2009, 2(7): 519-525. |
60 | SMITTENBERG R H, SAENGER C, DAWSON M N, et al. Compound-specific D/H ratios of the marine lakes of Palau as proxies for West Pacific Warm Pool hydrologic variability[J]. Quaternary Science Reviews, 2011, 30(7/8): 921-933. |
61 | PAHNKE K, SACHS J P, KEIGWIN L, et al. Eastern tropical Pacific hydrologic changes during the past 27,000 years from D/H ratios in alkenones[J]. Paleoceanography, 2007, 22(4): PA4214. |
62 | KASPER S, van der MEER M T J, CASTA?EDA I S, et al. Testing the alkenone D/H ratio as a paleo indicator of sea surface salinity in a coastal ocean margin (Mozambique Channel)[J]. Organic Geochemistry, 2015, 78: 62-68. |
63 | VASILIEV I, REICHART G J, KRIJGSMAN W. Impact of the messinian salinity crisis on black sea hydrology—insights from hydrogen isotopes analysis on biomarkers[J]. Earth and Planetary Science Letters, 2013, 362: 272-282. |
64 | PETRICK B F, MCCLYMONT E L, MARRET F, et al. Changing surface water conditions for the last 500 ka in the Southeast Atlantic: implications for variable influences of Agulhas leakage and Benguela upwelling[J]. Paleoceanography, 2015, 30(9): 1 153-1 167. |
65 | QUIRóS C L, CALVO E, SCHOUTEN S, et al. Controls on primary productivity in the eastern equatorial pacific, east of the galapagos islands, during the penultimate deglaciation[J]. Paleoceanography and Paleoclimatology, 2020, 35(7): e2019PA003777. |
66 | van der MEER M T J, BAAS M, RIJPSTRA W I C, et al. Hydrogen isotopic compositions of long-chain alkenones record freshwater flooding of the Eastern Mediterranean at the onset of sapropel deposition[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 594-600. |
67 | van der MEER M T J, SANGIORGI F, BAAS M, et al. Molecular isotopic and dinoflagellate evidence for Late Holocene freshening of the Black Sea[J]. Earth and Planetary Science Letters, 2008, 267(3/4): 426-434. |
68 | KASPER S, van der MEER M T J, METS A, et al. Salinity changes in the Agulhas leakage area recorded by stable hydrogen isotopes of C37 alkenones during Termination I and II[J]. Climate of the Past, 2014, 10(1): 251-260. |
69 | WEISS G M, BAR M W D, STOLWIJK D J, et al. Paleosensitivity of hydrogen isotope ratios of long‐chain alkenones to salinity changes at the chile margin[J]. Paleoceanography and Paleoclimatology, 2019, 34(6): 978-989. |
70 | SIMON M H, GONG X, HALL I R, et al. Salt exchange in the Indian‐Atlantic Ocean Gateway since the Last Glacial Maximum: a compensating effect between Agulhas Current changes and salinity variations?[J]. Paleoceanography, 2015, 30(10): 1 318-1 327. |
71 | ROHLING E J. Progress in paleosalinity: overview and presentation of a new approach[J]. Paleoceanography, 2007, 22(3): PA3215. |
72 | LEDUC G, SACHS J P, KAWKA O E, et al. Holocene changes in eastern equatorial Atlantic salinity as estimated by water isotopologues[J]. Earth and Planetary Science Letters, 2013, 362: 151-162. |
73 | CRAIG H, GORDON L I. Deuterium and oxygen 18 variations in the ocean and marine atmosphere[C]// Stable isotopes in oceanographic studies and paleotemperatures. Spoleto, 1965: 9-130. |
74 | ROZANSKI K, ARAGUAS-ARAGUAS L, GONFIANTINI R. Isotopic patterns in modern global precipitation[M]//SWART P K, LOHMANN K C,MCKENZIE J,et al. Climate change in continental isotopic records. Washington, D.C.: AGU Monograph 78, 2013: 1-36. |
75 | WAELBROECK C, LABEYRIE L, MICHEL E, et al. Sea‐level and deep water temperature changes derived from benthic foraminifera isotopic records[J]. Quaternary Science Reviews, 2002, 21(1/2/3): 295-305. |
76 | LEGRANDE A N, SCHMIDT G A. Water isotopologues as a quantitative paleosalinity proxy[J]. Paleoceanography, 2011, 26(3): PA3225. |
77 | ADKINS J F. The salinity, temperature, and delta 18O of the glacial deep ocean[J]. Science, 2002, 298(5 599): 1 769-1 773. |
78 | BROECKER W S. The glacial world according to Wally[M]. Palisades, N.Y.: Eldigio Press, 2002. |
79 | XING Lei, YANG Xinxin, XIAO Rui. Progress of compositions and indications of long -chain alkenones[J]. Periodical of Ocean University of China, 2019, 49(10): 79-87. |
79 | 邢磊, 杨欣欣, 肖睿. 长链烯酮的组合特征及其对盐度和母源种属指示意义的研究进展[J]. 中国海洋大学学报(自然科学版), 2019, 49(10): 79-87. |
80 | WEISS G M, MASSALSKA B, HENNEKAM R, et al. Alkenone distributions and hydrogen isotope ratios show changes in haptophyte species and source water in the holocene baltic sea[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(2): e2019GC008751. |
/
〈 |
|
〉 |