Alkenones-specific Radiocarbon Analysis:A Review of Approaches and Implications
Received date: 2021-07-27
Revised date: 2021-10-22
Online published: 2022-01-20
Supported by
the National Natural Science Foundation of China "Investigating transformation, distribution and burial of sedimentary organic carbon in marginal seas: insight from compound specific radiocarbon analysis"(42076037);The Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) "The environmental evolution of the coastline and tidal flat wetlands in the Guangdong-Hongkong-Macao Greater Bay area on a millennium to ten-year scale"(GML2019ZD0209)
Biomarkers are important organic geochemical fingerprints in studying paleoceanography and oceanic elemental cycles. Isotope compositions of biomarkers have significant meanings in investigating the paleoenvironmental reconstruction and carbon cycles in marine realm. Radiocarbon age of Long-Chain Alkenones (LCAs) has greatly scientific significance in constraining age models for establishing marine environmental changes, and studying oceanic carbon cycles at a molecular level, setting an important dimension for the future researches in compound-specific radiocarbon analysis. It thus is necessary to summarize systematically the approaches and implications of Alkenones-Specific Radiocarbon Analysis (ASRA). The separation and purification technologies of LCAs, radiocarbon calculation methods, and blank correction are summarized here. The significant implications of ASRA are proposed as follows: ASRA ①indicates indirectly transportation and deposition processes on sedimentary organic matter, ② can be used to trace marine carbon pool, and ③ to improve chronology and paleoenvironmental indicators in the ocean. The foreground of the development and application of ASRA are also demonstrated. We suggest that systematically summarizing the technical characteristics and typical applications of ASRA is of significance in carbon cycles and paleoenvironment reconstruction in marine system, especially for marine biogeochemical studies in China marginal seas.
Rui XIAO , Rui BAO , Lei XING . Alkenones-specific Radiocarbon Analysis:A Review of Approaches and Implications[J]. Advances in Earth Science, 2021 , 36(12) : 1258 -1271 . DOI: 10.11867/j.issn.1001-8166.2021.112
1 | LEEUW J, MEER F, RIJPSTRA W, et al. On the occurrence and structural identification of long chain unsaturated ketones and hydrocarbons in sediments [J]. Physics & Chemistry of the Earth, 1980, 12: 211-217. |
2 | VOLKMAN J K, BARRETT S M, BLACKBURN S I, et al. Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate [J]. Geochimica et Cosmochimica Acta, 1995, 59(3): 513-520. |
3 | LIU W, LIU Z, FU M, et al. Distribution of the C37 tetra-unsaturated alkenone in Lake Qinghai, China: a potential lake salinity indicator [J]. Geochimica et Cosmochimica Acta, 2008, 72(3): 988-997. |
4 | WARDEN L, MEER M, MOROS M, et al. Sedimentary alkenone distributions reflect salinity changes in the Baltic Sea over the Holocene [J]. Organic Geochemistry, 2016, 102: 30-44. |
5 | SEKI O, FOSTER G L, SCHMIDT D N, et al. Alkenone and boron-based Pliocene pCO2 records [J]. Earth and Planetary Science Letters, 2010, 292(1/2): 201-211. |
6 | PAGANI M, FREEMAN K H, OHKOUCHI N, et al. Comparison of water column [CO2aq] with sedimentary alkenone-based estimates: a test of the alkenone-CO2 proxy [J]. Paleoceanography, 2002, 17(4): 1-21. |
7 | PAGANI M, FREEMAN K, OHKOUCHI N, et al. The accuracy of the alkenone-pCO2 proxy [Z]. Geophysical Research Abstracts, 2003. |
8 | ZHANG Y G, HENDERIKS J, LIU X. Refining the alkenone-pCO2 method II: towards resolving the physiological parameter 'b' [J]. Geochimica et Cosmochimica Acta, 2020, 281: 118-134. |
9 | PRAHL F G, MUEHLHAUSEN L A, ZAHNLE D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions [J]. Geochimica et Cosrnochimica Acta, 1988, 52(9): 2 303-2 310. |
10 | DING Ling, XING Lei, ZHAO Meixun. Applications of biomarkers for reconstructing phytoplankton productivity and community structure changes [J]. Advances in Earth Science, 2010, 25(9): 981-989. |
10 | 丁玲,邢磊,赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展 [J]. 地球科学进展, 2010, 25(9): 981-989. |
11 | CHU G, SUN Q, LI S, et al. Long-chain alkenone distributions and temperature dependence in lacustrine surface sediments from China [J]. Geochimica et Cosmochimica Acta, 2005, 69(21): 4 985-5 003. |
12 | LIU Z H, LIU W G. Composition patterns of long-chain alkenones in lacustrine settings [J]. Journal of Earth Environment, 2012, 3(4): 942-949. |
13 | LONGO W M, HUANG Y, YAO Y, et al. Widespread occurrence of distinct alkenones from Group I haptophytes in freshwater lakes: implications for paleotemperature and paleoenvironmental reconstructions [J]. Earth & Planetary Science Letters, 2018, 492: 239-250. |
14 | BRASSELL S C, BRERETON R G, EGLINTON G, et al. Palaeoclimatic signals recognized by chemometric treatment of molecular stratigraphic data [J]. Organic Geochemistry, 1986, 10(4/6): 649-660. |
15 | ROSELL A, GRIMALT J O, EGLINTON G. Organic compounds as Proxy-Indicators of sea surface palaeotemperature: the U 37 k index[M]//Long-term climatic variations-data and modelling. Berlin Heidelberg: Springer, 1994: 239-249. |
16 | KASPER S, van der MEER M T J, CASTAEDA I S, et al. Testing the alkenone D/H ratio as a paleo indicator of sea surface salinity in a coastal ocean margin (Mozambique Channel) [J]. Organic Geochemistry, 2015, 78: 62-68. |
17 | GOULD J, KIENAST M, DOWD M, et al. An open-ocean assessment of alkenone δD as a paleo-salinity proxy [J]. Geochimica et Cosmochimica Acta, 2019, 246(1): 478-497. |
18 | PAHNKE K, SACHS J P, KEIGWIN L, et al. Eastern tropical Pacific hydrologic changes during the past 27,000 years from D/H ratios in alkenones [J]. Paleoceanography, 2007, 22(4): 1-15. |
19 | JASPER J P, HAYES J M, MIX A C, et al. Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years [J]. Paleoceanography, 1994, 9(6): 781-798. |
20 | BAE S W, LEE K E, KIM K. Use of carbon isotopic composition of alkenone as a CO2 proxy in the east Sea/Japan Sea [J]. Continental Shelf Research, 2015, 107(15): 24-32. |
21 | OHKOUCHI N, EGLINTON T I, KEIGWIN L D, et al. Spatial and temporal offsets between proxy records in a sediment drift [J]. Science, 2002, 298(5 596): 1 224-1 227. |
22 | BRASSELL S C, EGLINTON G, MARLOWE I T, et al. Molecular stratigraphy: a new tool for climatic assessment [J]. Nature, 1986, 320(6 058): 129-133. |
23 | SMITTENBERG R, HOPMANS E C, SCHOUTEN S, et al. Compound-specific radiocarbon dating of the varved Holocene sedimentary record of Saanich Inlet, Canada [J]. Paleoceanography, 2004, 19(2): 1-16. |
24 | UCHIDA M, SHIBATA Y, OHKUSHI K, et al. Age discrepancy between molecular biomarkers and calcareous foraminifera isolated from the same horizons of Northwest Pacific sediments [J]. Chemical Geology, 2005, 218(1/2): 73-89. |
25 | MOLLENHAUER G, MONTLUCON D, EGLINTON T I. Radiocarbon dating of alkenones from marine sediments: II. assessment of carbon process blanks [J]. Radiocarbon, 2005, 47(3): 413-424. |
26 | PEARSON A, EGLINTON T I, MCNICHOL A P. An organic tracer for surface ocean radiocarbon [J]. Paleoceanography, 2000, 15(5): 541-550. |
27 | OHKOUCHI N, EGLINTON T I, HAYES J M. Radiocarbon dating of individual fatty acids as a tool for refining Antarctic margin sediment chronologies [J]. Radiocarbon, 2003, 45(1): 17-24. |
28 | PRAHL F G, WAKEHAM S G. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment [J]. Nature, 1987, 330(6 146): 367-369. |
29 | ZHANG Hailong, TAO Shuqin, YU Meng, et al. A review on techniques and applications of biomarker compound-specific radiocarbon analysis [J]. Advances in Earth Science, 2017, 32(11): 79-89. |
29 | 张海龙,陶舒琴,于蒙,等. 生物标志物单体放射性碳同位素分析技术的发展 [J]. 地球科学进展, 2017, 32(11): 79-89. |
30 | D' ANDREA W J, LIU Z, ALEXANDRE M D R, et al. An efficient method for isolating individual long-chain alkenones for compound-specific hydrogen isotope analysis [J]. Analytical Chemistry, 2007, 79(9): 3 430-3 435. |
31 | OHKOUCHI N, XU L, REDDY C M, et al. Radiocarbon dating of alkenones from marine sediments: I. isolation protocol [J]. Radiocarbon, 2005, 47(3): 401-412. |
32 | MOMCHILOVA S, NIKOLOVA-DAMYANOVA B. Stationary phases for silver ion chromatography of lipids: preparation and properties [J]. Journal of Separation Science, 2003, 26: 261-270. |
33 | MOLLENHAUER G, EGLINTON T I, OHKOUCHI N, et al. Asynchronous alkenone and foraminifera records from the Benguela Upwelling System [J]. Geochimica et Cosmochimica Acta, 2003, 67(12): 2 157-2 171. |
34 | LUZ L G, AUSIN B, HAGHIPOUR N, et al. Alkenones isolation from lipid fraction of marine sediments in the Southeastern Continental Brazilian Slope [J]. Revista Virtual de Quimica, 2019, 11(1): 1-14. |
35 | WANG L, LONGO W M, DILLON J T, et al. An efficient approach to eliminate steryl ethers and miscellaneous esters/ketones for gas chromatographic analysis of alkenones and alkenoates [J]. Journal of Chromatography A, 2019, 1 596: 175-182. |
36 | XU L, REDDY C M, FARRINGTON J W, et al. Identification of a novel alkenone in Black Sea sediments [J]. Organic Geochemistry, 2001, 32(5): 633-645. |
37 | DILLON J T, LONGO W M, ZHANG Y, et al. Identification of double-bond positions in isomeric alkenonesfrom a lacustrine haptophyte [J]. Rapid Communications in Mass Spectrometry, 2016, 30: 112-118. |
38 | EGLINTON T I, ALUWIHARE L I, BAUER J E, et al. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating [J]. Analytical Chemistry, 1996, 68(5): 904-912. |
39 | WACKER L, LIPPOLD J, MOLNáR M, et al. Towards radiocarbon dating of single foraminifera with a gas ion source [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294: 307-310. |
40 | SANTOS G M, SOUTHON J R, GRIFFIN S, et al. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility [J]. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atmos, 2007, 259(1): 293-302. |
41 | BALL G I, XU L, MCNICHOL A P, et al. A two-dimensional, heart-cutting preparative gas chromatograph facilitates highly resolved single-compound isolations with utility towards compound-specific natural abundance radiocarbon (14C) analyses. [J]. Journal of Chromatography A, 2012, 1 220: 122-131. |
42 | PEARSON A, MCNICHOL A P, SCHNEIDER R J, et al. Microscale AMS 14C measurements at NOSAMS [J]. Radiocarbon, 1998, 40(1): 61-75. |
43 | MOLLENHAUER G, KIENAST M, LAMY F, et al. An evaluation of 14C age relationships between co-occurring foraminifera, alkenones, and total organic carbon in continental margin sediments [J]. Paleoceanography, 2005, 20(1): 1-12. |
44 | ZIOLKOWSKI L A, DRUFFEL E. Quantification of extraneous carbon during compound specific radiocarbon analysis of black carbon [J]. Analytical Chemistry, 2009, 81(24): 10 156-10 161. |
45 | SHAH S R, PEARSON A. Ultra-Microscale (5-25 μg C) analysis of individual lipids by 14C AMS: assessment and correction for sample processing blanks [J]. Radiocarbon, 2007, 49(1): 69-82. |
46 | COPPOLA A I, ZIOLKOWSKI L A, DRUFFEL E. Extraneous carbon assessments in radiocarbon measurements of black carbon in environmental matrices [J]. Radiocarbon, 2012, 55(3): 1 631-1 640. |
47 | MOLLENHAUER G, RETHEMEYER J. Compound-specific radiocarbon analysis—analytical challenges and applications [J]. IOP Conference Series: Earth and Environmental Science, 2009, 5: 1-9. |
48 | LI Xiaoyan, SHI Xuefa, CHENG Zhenbo, et al. Advances in study on the methods for sea surface paleotemperature reconstruction [J]. Advances in Marine Science, 2008, 26(4): 512-521. |
48 | 李小艳,石学法,程振波,等. 表层海水古温度再造方法的研究进展 [J]. 海洋科学进展, 2008, 26(4): 512-521. |
49 | AUBRY M, BORD D, BEAUFORT L, et al. Trends in size changes in the coccolithophorids, calcareous nannoplankton, during the mesozoic: a pilot study [J]. Micropaleontology, 2005, 51: 309-318. |
50 | ZHAO Meixun, YU Meng, ZHANG Hailong, et al. Applications of compound-specific radiocarbon analysis in oceanography and environmental science [J]. Acta Oceanologica Sinica, 2014, 36(4): 1-10. |
50 | 赵美训,于蒙,张海龙,等. 单体分子放射性碳同位素分析在海洋科学及环境科学研究中的应用 [J]. 海洋学报, 2014, 36(4): 1-10. |
51 | AUSíN B, HAGHIPOUR N, BRUNI E, et al. The influence of lateral transport on sedimentary alkenone paleoproxy signals [J]. EGU Biogeosciences, 2021, 204: 1-25. |
52 | MOLLENHAUER G, EGLINTON T. Radiocarbon dating of alkenones in sediments from the Namibian continental margin [Z]. Nice: EGS General Assembly Conference, 2002. |
53 | MOLLENHAUER G, EGLINTON T I. Diagenetic and sedimentological controls on the composition of organic matter preserved in California Borderland Basin sediments [J]. Limnology and Oceanography, 2007, 52(2): 558-576. |
54 | OHKOUCHI N, MOLLENHAUER G, EGLINTON T I. Comparisons of radiocarbon ages of alkenones with planktonic foraminifera and total organic carbon in oceanic surface sediments [Z]. San Francisco: AGU Fall Meeting, 2003. |
55 | MOLLENHAUER G, MCMANUS J F, BENTHIEN A, et al. Rapid lateral particle transport in the Argentine Basin: molecular 14C and 230Thxs evidence [J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53(7): 1 224-1 243. |
56 | KUSCH S, EGLINTON T I, MIX A C, et al. Timescales of lateral sediment transport in the Panama Basin as revealed by radiocarbon ages of alkenones, total organic carbon and foraminifera [J]. Earth and Planetary Science Letters, 2010, 290(3/4): 340-350. |
57 | TAO S, XING L, LUO X, et al. Alkenone distribution in surface sediments of the southern Yellow Sea and implications for the U 37 k ' thermometer [J]. Geo-Marine Letters, 2012, 32(1): 61-71. |
58 | MüLLER P J, KIRST G, RUHLAND G, et al. Calibration of the alkenone paleotemperature index U 37 k ' based on core-tops from the eastern South Atlantic and the global ocean (60° N- 60°S) [J]. Geochimica et Cosmochimica Acta, 1998, 62(10): 1 757-1 772. |
59 | CONTE M H, THOMPSON A, LESLEY D, et al. Genetic and physiological influences on the Alkenone/Alkenoate versus growth temperature relationship in emiliania huxleyi and gephyrocapsa oceanica [J]. Geochimica et Cosmochimica Acta, 1998, 62(1): 51-68. |
60 | SICRE M, BARD E, EZAT U, et al. Alkenone distributions in the North Atlantic and Nordic sea surface waters [J]. Geochemistry Geophysics Geosystems, 2002, 3(2): 1-13. |
61 | GOI M A, HARTZ D M, THUNELL R C, et al. Oceanographic considerations for the application of the alkenone-based paleotemperature U 37 k ' index in the Gulf of California [J]. Geochimica et Cosmochimica Acta, 2001, 65(4): 545-557. |
62 | RICHEY J N, TIERNEY J E. GDGT and alkenone flux in the northern Gulf of Mexico: implications for the TEX86 and U 37 k ' paleothermometers [J]. Paleoceanography, 2016, 31: 1 547-1 561. |
63 | PRAHL F G, RONTANI J F, ZABETI N, et al. Systematic pattern in U 37 k '-temperature residuals for surface sediments from high latitude and other oceanographic settings [J]. Geochimica et Cosmochimica Acta, 2010, 74(1): 131-143. |
64 | ROSELL-MELé A, PRAHL F G. Seasonality of U 37 k ' temperature estimates as inferred from sediment trap data [J]. Quaternary Science Reviews, 2013, 72: 128-136. |
65 | VERSTEEGH G, RIEGMAN R, LEEUW J, et al. U 37 k ' values for Isochrysis galbana as a function of culture temperature, light intensity and nutrient concentrations [J]. Organic Geochemistry, 2001, 32(6): 785-794. |
66 | KEIGWIN L D. Sedimentary record yields several centuries of data: the Little Ice Age and Medieval Warm Period in the Sargasso Sea [J]. Science, 1996, 274(5 292): 1 503-1 508. |
67 | SIKES E L, VOLKMAN J K. Calibration of alkenone unsaturation ratios (U 37 k ') for paleotemperature estimation in cold polar waters [J]. Geochimica et Cosmochimica Acta, 1993, 57(8): 1 883-1 889. |
68 | SONZOGNI C, BARD E, ROSTEK F, et al. Temperature and salinity effects on alkenone ratios measured in surface sediments from the Indian Ocean [J]. Quaternary Research, 1997, 47(3): 344-355. |
69 | CONTE M H, SICRE M L, RüHLEMANN C, et al. Global temperature calibration of the alkenone unsaturation index (U 37 k ') in surface waters and comparison with surface sediments [J]. Geochemistry Geophysics Geosystems, 2006, 7(2): 1-22. |
70 | BART P J, CONE A N. Early stall of West Antarctic Ice Sheet advance on the eastern Ross Sea middle shelf followed by retreat at 27,500 14C yr BP [J]. Palaeogeography Palaeoclimatology Palaeoecology, 2012, 335/336: 52-60. |
71 | ZHU Kunjie, HE Shuping, CHEN Fang, et al. Engineering geological characteristics and genesis of the sediments from the southern Mariana Trench [J]. Journal of Geology, 2015, 39(2): 251-257. |
71 | 朱坤杰,何树平,陈芳,等. 马里亚纳海沟南部海域沉积物的工程地质特性及其成因 [J]. 地质学刊, 2015, 39(2): 251-257. |
72 | XIAO Chunhui, WANG Yonghong, LIN Jian. Research progress on ocean trench sedimentation [J]. Journal of Tropical Oceanography, 2017, 36(6): 27-38. |
72 | 肖春晖,王永红,林间. 海沟沉积物研究进展 [J]. 热带海洋学报, 2017, 36(6): 27-38. |
73 | FIGEN M. Radiocarbon dating of planktonic foraminifer shells: a cautionary tale [J]. Paleoceanography, 2014, 29(1): 13-29. |
74 | LIN Gang, CHEN Linying, LUO Min, et al. Source of organic matter and changes in carbonate content in the New Britain Trench, Central Western Pacific Warm Pool [J]. Geochimica, 2019, 48(2): 138-148. |
74 | 林刚,陈琳莹,罗敏,等. 西太平洋暖池核心区新不列颠海沟有机质来源及碳酸盐含量变化 [J]. 地球化学, 2019, 48(2): 138-148. |
75 | BAO R, STRASSER M, MCNICHOL A P, et al. Tectonically triggered sediment and carbon export to the Hadal zone [J]. Nature Communications, 2018, 9(121): 1-8. |
76 | XU Y, LI X, LUO M, et al. Distribution, source and burial of sedimentary organic carbon in Kermadec and Atacama trenches [J]. Journal of Geophysical Research Biogeosciences, 2021, 126(5): 1-16. |
77 | EGLINTON T I, BENITEZ-NELSON B C. Variability in radiocarbon ages on individual organic compounds from marine sediments. [J]. Science, 1997, 277(5 327): 796-799. |
78 | OLSSON I U. Accuracy and precision in sediment chronology [J]. Hydrobiologia, 1991, 214(1): 25-34. |
79 | STUIVER M, PALACH H A. Discussion: reporting of 14C Data [J]. Radiocarbon, 1977, 19(3): 355-363. |
80 | HAO Yichun, MAO Shaozhi. Acta micropalaeontologica sinica [M]. Wuhan: China University of Geosciences Press, 1989. |
80 | 郝诒纯,茅绍智. 微体古生物学教程 [M]. 武汉: 中国地质大学出版社, 1989. |
81 | CHEN Puli. Review of the calcareous nannofossils in stratigraphy [J]. Inner Mongolia Petrochemical Industry, 2009, 35(17): 4-6. |
81 | 陈蒲礼. 钙质超微化石在地层学中的研究综述 [J]. 内蒙古石油化工, 2009, 35(17): 4-6. |
82 | WALLACE D. Introduction to special section: ocean measurements and models of carbon sources and sinks [J]. Global Biogeochemical Cycles, 2001, 15(1): 3-10. |
83 | BOWN P R. Calcareous nannofossil biostratigraphy [M]. London: Kluwer Academic Publisher, 1998. |
84 | LU Xi, SONG Jinming, YUAN Huamao, et al. Carbon distribution and exchange of Kuroshio and adjacent China sea shelf: a review [J]. Advances in Earth Science, 2015, 30(2): 214-225. |
84 | 卢汐,宋金明,袁华茂,等. 黑潮与毗邻陆架海域的碳交换 [J]. 地球科学进展, 2015, 30(2): 214-225. |
85 | BAO R, BLATTMANN T, MCINTYRE C, et al. Relationships between grain size and organic carbon 14C heterogeneity in continental margin sediments [J]. Earth and Planetary Science Letters, 2019, 505: 76-85. |
/
〈 |
|
〉 |