Simulation and Projection of Evapotranspiration over the Tibetan Plateau Based on CAS-ESM2
Received date: 2021-05-07
Revised date: 2021-07-26
Online published: 2021-09-22
Supported by
the National Key Research and Development Program of China "Development of global high resolution land surface model and its applications"(2017YFA0604304);The National Natural Science Foundation of China "Simulation of the effect of absorptive aerosol deposition on snow to land surface energy and water cycle over the Tibetan Plateau"(41975119)
The performance of Earth System Model Version 2 of the Chinese Academy of Sciences (CAS-ESM2) in simulating the evapotranspiration over the Tibetan Plateau was evaluated using the GLEAM dataset, i.e., Global Land Surface Evaporation: the Amsterdam Methodology Version 3.3a. Then, the projected future changes of evapotranspiration and relevant meteorological variables over the Tibetan Plateau using CAS-ESM2 were also been presented. The results show that CAS-ESM2 can reasonably reproduce the observed geographical distribution and seasonal cycle of evapotranspiration over the Tibetan Plateau. CAS-ESM2 can also reproduce the increasing trend of evapotranspiration during 1981-2014 over the plateau, but with relatively weaker magnitudes. Based on the CAS-ESM2 projection results under four different Shared Socioeconomic Pathways (SSP) scenarios,
Fengyun TIAN , Chenglai WU , He ZHANG , Zhaohui LIN . Simulation and Projection of Evapotranspiration over the Tibetan Plateau Based on CAS-ESM2[J]. Advances in Earth Science, 2021 , 36(8) : 797 -809 . DOI: 10.11867/j.issn.1001-8166.2021.084
| 1 | YAO Tandong, CHEN Fahu, CUI Peng, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole [J].Bulletin of Chinese Academy of Sciences, 2017, 32(9):924-931. |
| 1 | 姚檀栋,陈发虎,崔鹏,等. 从青藏高原到第三极和泛第三极[J].中国科学院院刊,2017,32(9):924-931. |
| 2 | CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau [J].Chinese Science Bulletin ,2015, 60(32): 3 025-3 035. DOI: 10.1360/N972014-01370. |
| 2 | 陈德亮,徐柏青,姚檀栋,等.青藏高原环境变化科学评估:过去、现在与未来[J].科学通报,2015,60(32):3 025-3 035. DOI: 10.1360/N972014-01370. |
| 3 | YAO Tandong, PIAO Shilong, SHEN Miaogen, et al. Chained impacts on modern environment of interaction between Westerlies and Indian Monsoon on Tibetan Plateau [J]. Bulletin of Chinese Academy of Sciences,2017,32(9):976-984. |
| 3 | 姚檀栋,朴世龙,沈妙根,等.印度季风与西风相互作用在现代青藏高原产生连锁式环境效应[J].中国科学院院刊,2017,32(9):976-984. |
| 4 | YANG Kun, HUI Wu, QIN Jun, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review [J]. Global and Planetary Change, 2014, 112:79-91. |
| 5 | TANG Qiuhong, LIU Yubo, ZHANG Chi, et al. Research progress on moisture source change of precipitation over the Tibetan Plateau and its surrounding areas[J].Transactions of Atmospheric Sciences, 2020,43(6) : 1 002-1 009. |
| 5 | 汤秋鸿,刘宇博,张弛,等.青藏高原及其周边地区降水的水汽来源变化研究进展[J].大气科学学报,2020,43(6) : 1 002-1 009. |
| 6 | ZHANG Xueqin,YU Ren,YIN Zhiyong,et al. Spatial andtemporal variation patterns of reference evapotranspirationacross the Qinghai-Tibetan Plateau during 1971-2004[J].Journal of Geophysical Research Atmospheres,2009,114(D15). DOI: 10.1029/2009JD011753. |
| 7 | WANG Buwei,ZHANG Xueqin. Change and attribution of reference evapotranspiration over the Tibetan Plateau during the period of1971-2014 [J]. Arid Zone Research,2019, 36(2):269-279. |
| 7 | 汪步惟,张雪芹. 1971—2014年青藏高原参考蒸散变化及其归因[J].干旱区研究,2019,36(2):269-279. |
| 8 | YAO Tianci, LU Hongwei, YU Qing, et al. Potential evapotranspiration characteristic and its abrupt change across the Qinghai-Tibetan Plateau and its surrounding areas in the last 50 years[J]. Advances in Earth Science,2020,35(5):534-546. |
| 8 | DOI:10.11867/j.issn.1001-8166.2020.031. [姚天次,卢宏玮,于庆,等.近50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J].地球科学进展,2020,35(5):534-546.DOI:10.11867/j.issn. 1001-8166.2020.031.] |
| 9 | YAO Tianci, LU Hongwei, WEI Feng, et al. Evaporation abrupt changes in the Qinghai-Tibet Plateau during the last half-century [J]. Scientific Reports, 2019, 9(1):20181. |
| 10 | WANG Kunxin, ZHANG Yinsheng, MA Ning, et al. Cryosphere evapotranspiration in the Tibetan Plateau: a review[J]. Sciences in Cold and Arid Regions, 2020, 12(6): 355-370. |
| 11 | MIRALLES D G, HOLMES T, DE J, et al. Global land-surface evaporation estimated from satellite-based observations[J]. Hydrology and Earth System Sciences Discussions, 2011, 15(133):453-469. |
| 12 | MARTENS B, MIRALLES D G, LIEVENS H, et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture [J]. Geoscientific Model Development, 2017, 10(5). DOI: 10.5194/gmd-10-1903-2017. |
| 13 | YANG Xiuqin, YONG Bin, REN Liliang, et al. Multi-scale validation of GLEAM evapotranspiration products over China via ChinaFLUX ET measurements [J]. International Journal of Remote Sensing, 2017, 38(20):5 688-5 709. |
| 14 | WEN Xin, ZHOU Ji, LIU Shaomin, et al. Spatio-temporal characteristics of surface evapotranspiration in source region of rivers in Southwest China based on multi-source products [J]. Water Resources Protection, 2021,37(3):32-42. |
| 14 | 温馨,周纪,刘绍民,等.基于多源产品的西南河流源区地表蒸散发时空特征[J].水资源保护, 2021,37(3):32-42. |
| 15 | LU Han, YE Linyuan, LUO Peng, et al. Spatio-temporal characteristics of water cycle change in the Yangtze River Basin based on remote sensing and reanalysis evapotranspiration data[J]. China Rural Water and Hydropower, 2020, 457(11):48-55, 67. |
| 15 | 鲁汉,叶林媛,罗鹏,等.基于遥感和再分析蒸散发数据的长江流域水循环变化时空特征研究[J]. 中国农村水利水电,2020, 457(11):48-55, 67. |
| 16 | ZHOU Tianjun, ZHANG Wenxia, CHEN Xiaolong, et al. The near-term, mid-term and long-term projections of temperature and precipitation changes over the Tibetan Plateau and the sources of uncertainties [J].Journal of the Meteorological Sciences,2020,40(5) : 697-710. |
| 16 | 周天军,张文霞,陈晓龙,等.青藏高原气温和降水近期、中期与长期变化的预估及其不确定性来源[J].气象科学,2020,40(5) : 697-710. |
| 17 | WU Fangying, YOU Qinglong, XIE Wenxin, et al. Temperature change on the Tibetan Plateau under the global warming of 1.5 ℃ and 2 ℃[J]. Climate Change Research, 2019, 15 (2): 130-139. |
| 17 | 吴芳营,游庆龙,谢文欣,等. 全球变暖1.5 ℃和2 ℃阈值时青藏高原气温的变化特征[J].气候变化研究进展,2019,15 (2): 130-139. |
| 18 | FAN Keke, ZHANG Qiang, SUN Peng, et.al. Variation, causes and future estimation of surface soil moisture on the Tibetan Plateau [J]. The Geographical Journal,2019, 74(3):520-533. |
| 18 | 范科科,张强,孙鹏, 等.青藏高原地表土壤水变化、影响因子及未来预估[J]. 地理学报,2019, 74(3):520-533. |
| 19 | JIANG Dabang, HU Dan, TIAN Zhiping, et al. Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian Monsoon[J]. Advances in Atmospheric Sciences, 2020,37(10):1 102-1 118. |
| 20 | ZHANG He, ZHANG Minghua, JIN Jiangbo, et al. Description and climate simulation performance of CAS-ESM version2 [J]. Journal of Advances in Modeling Earth Systems,2020, 12(12). DOI:10.1029/2020MS002210. |
| 21 | ZENG Qingcun, ZHOU Guangqing, PU Yifen, et al. Research on the earth system dynamic model and some related numerical simulations [J]. Chinese Journal of Atmospheric Sciences, 2008, 32 (4):653-690. |
| 21 | 曾庆存,周广庆,浦一芬, 等.地球系统动力学模式及模拟研究[J].大气科学,2008,32(4):653-690. |
| 22 | ZENG Qingcun, LIN Zhaohui. Advances in Earth system dynamics modeling and simulation[J].Advances in Earth Science, 2010,25(1):1-6. |
| 22 | 曾庆存,林朝晖.地球系统动力学模式和模拟研究的进展[J].地球科学进展,2010,25(1):1-6. |
| 23 | LIU Hailong, LIN Pengfei, YU Yongqiang, et al. The baseline evaluation of LASG/IAP Climate System Ocean Model (LICOM) version 2 [J]. Journal of Meteorological Research, 2012, 26(3):318-329. |
| 24 | DONG Xiao, JIN Jiangbo, LIU Hailong, et al. CAS-ESM2.0 Model Datasets for CMIP6 Ocean Model Intercomparison Project Phase 1 (OMIP1) [J]. Advances in Atmospheric Sciences, 2020, 38: 307-316. |
| 25 | DAI Yongjiu, ZENG Xuebin, DICKINSON R E, et al. The Common Land Model (CLM)[J]. Bulletin of the American Meteorological Society, 2003, 84(8): 1 013-1 023. |
| 26 | O'NRILL B C, TEBALDI C, VUUREN D P VAN, et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 [J].Geoscientific Model Development, 2016, 9(9): 3 461-3 482. |
| 27 | MIRALLES D G, VAN D, GASH J H, et al. El Ni?o-La Ni?a cycle and recent trends in continental evaporation [J]. Nature Climate Change, 2014, 4(2):1-4. |
| 28 | MARTENS B, JEU R D, VERHOEST N, et al. Towards estimating land evaporation at field scales using GLEAM [J]. Remote Sensing, 2018, 10(11):1720. |
| 29 | MIRALLES D G, TEULING A J, HEERWAARDEN C, et al. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation[J]. Nature Geoscience, 2014, 7(5):345-349. |
| 30 | GUILLOD B P, ORLOWSKY B, MIRALLES D G, et al. Reconciling spatial and temporal soil moisture effects on afternoon rainfall[J]. Nature Communications, 2015, 6:6443. |
| 31 | KAUWE M D, KALA J, LIN Y S, et al. A test of an optimal stomatal conductance scheme within the CABLE land surface model [J]. Geoscientific Model Development, 2015, 8(2):431-452. |
| 32 | REICHLE R H, DRAPER C S, LIU Q, et al. Assessment of MERRA-2 land surface hydrology estimates [J]. Journal of Climate, 2016, 30(8):2 937-2 960. |
| 33 | WU Jia, GAO Xuejie. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013,56(4):1 102-1 111. DOI:10.6038/cjg20130406. |
| 33 | 吴佳,高学杰.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报,2013,56(4):1 102-1 111. DOI:10.6038/cjg20130406. |
| 34 | JIA Kun, RUAN Yunfeng, YANG Yanzhao, et al. Assessing the performance of CMIP5 Global Climate Models for simulating future precipitation change in the Tibetan Plateau[J]. Water,2019,11(9):1 771. DOI: 10.3390/w11091771. |
| 35 | HU Yiyang, XU Ying, LI Jinjian, et al. Evaluation on the performance of CMIP6 global climate models with different horizontal resolution in simulating the precipitation over China[J/OL]. Advances in Climate Change. [2021-08-14].. |
| 35 | 胡一阳,徐影,李金建,等.CMIP6不同分辨率全球气候模式对中国降水模拟能力评估[J/OL].气候变化研究进展. [2021-08-14].. |
| 36 | ZHU Yuyao, YANG Saini. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5[J]. Advances in Climate Change Research, 2020: 239-251. DOI: 10.1016/j.accre.2020.08.001. |
| 37 | LIN Changgui, CHEN Deliang, YANG Kun, et al. Impact of model resolution on simulating the water vapor transport through the central Himalayas: implication for models' wet bias over the Tibetan Plateau[J]. Climate Dynamics, 2018, 51(9) : 3 195-3 207. |
| 38 | YANG Xiaoyu, LIN Zhaohui, WANG Yuxi, et al. Simulation and projection of snow water equivalent over the Eurasian continent by CMIP5 coupled models [J]. Climatic and Environmental Research, 2017,22 (3): 253-270. |
| 38 | DOI:10.3878/j.issn.1006-9585.2016.16104.[杨笑宇, 林朝晖, 王雨曦, 等. CMIP5 耦合模式对欧亚大陆冬季雪水当量的模拟及预估 [J]. 气候与环境研究,2017, 22 (3): 253-270. DOI: 10.3878/j.issn.1006-9589.2016.16104.] |
/
| 〈 |
|
〉 |