The Evolution and Driving Factors of the North Canal System Since the End of the 16th Century

  • Raorao SU ,
  • Zhen ZHAO
Expand
  • School of History,Renmin University of China,Beijing 100872,China
SU Raorao (1993-), male, Xi’an City, Shannxi Province, Ph.D student. Research areas include historical physical geography and environmental history. E-mail: raosu@ruc.edu.cn
ZHAO Zhen (1962-), female, Xining City, Qinghai Province, Professor. Research areas include environmental history and historical human geography. E-mail: zhaozhen@ruc.edu.cn

Received date: 2020-12-24

  Revised date: 2021-03-01

  Online published: 2021-05-31

Supported by

the Major Projects of the Beijing Social Science Fund “The water environmental studies of capital region in Qing dynasty”(15LSA005)

Abstract

In this paper, based on the summary of the relationship between the evolution of river systems and the development of human society, historical archives and the Digital Elevation Model (DEM) of North Canal Basin (NCB), we used digitizing methods to extract four geographic profiles of the river system in NCB, from the late 16th century to the present (1582s, 1820s, 1933s, 2011s). Meanwhile, based on DEM data, we utilized river network classification and hydrologic analysis methods to calculate river system structure parameters. The results showed that from the late 16th century to now, the range of the basin was shrinking gradually, and the pattern of the river network from sub-dendritic shape was changing to mixed morphology. During A.D. 1582-A.D. 1820, which was the significant period in which River diversity (Rd), River frequency (Rf), Tributary development coefficient (T), and river network complexity (CR) increased significantly. Then, the overall trend stabilized, indicating the stream structure became simpler and simpler. By comparing the past river with the present one, we find that the Continuity index (C) of the North Canal has decreased since the Ming and Qing dynasties, indicating that human have imposed deep interference in the continuity of the river. By combining historical documents and DEM data, we find that under the constraints of natural geographical conditions, human excavation of river diversion, building dams, increasing water source to ensure the operation of the canal system and coping with floods, water system changes caused by floods are the reasons for the changes in the river system structure.

Cite this article

Raorao SU , Zhen ZHAO . The Evolution and Driving Factors of the North Canal System Since the End of the 16th Century[J]. Advances in Earth Science, 2021 , 36(4) : 390 -398 . DOI: 10.11867/j.issn.1001-8166.2021.043

References

1 WEI Yongping, ZHANG Zhiqiang, et al. Theory and practice of socio-hydrology[M]. Beijing: Science Press, 2017.
1 尉永平,张志强,等. 社会水文学理论、方法与应用[M]. 北京:科学出版社,2017.
2 ZENG Zhaoxuan, ZENG Xianshan. On historical geomorphology[M]. Beijing: Science Press, 1985.
2 曾昭璇,曾宪珊.历史地貌学浅论[M].北京:科学出版社,1985.
3 FERNANDES M R, AGUIAR F C, MARTINS M J, et al. Long-term human-generated alterations of Tagus River: Effects of hydrological and land-use changes in distinct river zones[J]. Catena, 2020, 188(104 466):1-14.
4 MAN Zhimin. Thoughts on the development of historical physical geography and frontier issues[J]. Jianghan Tribune, 2005(1):95-97.
4 满志敏.历史自然地理学发展和前沿问题的思考[J].江汉论坛,2005(1):95-97.
5 DU L, PENG X, WANG F. City walking-trace: How watershed structure and river network changes influenced the distribution of cities in the northern part of the North China Plain[J]. Quaternary International, 2019, 521:54-65.
6 WEI Yingying, LI Yiping, WENG Shenglin, et al. Impact of urbanization on stream structure and connectivity of plain river network in the Taihu Basin[J]. Journal of Lake Sciences, 2020,32(2):553-563.
6 魏蓥蓥,李一平,翁晟琳,等.太湖流域城市化对平原河网水系结构与连通性影响[J].湖泊科学,2020,32(2):553-563.
7 YU G A, DISSE M, HUANG H Q, et al. River network evolution and fluvial process responses to human activity in a hyper-arid environment—Case of the Tarim River in Northwest China[J]. Catena, 2016,147:96-109.
8 WU E-nuo. River health assessment: Theory, methods and practice [D]. Shanghai: East China Normal University, 2008.
8 吴阿娜.河流健康评价:理论、方法与实践[D].上海:华东师范大学,2008.
9 WANG Yuefeng, XU Youpeng, ZHANG Qianyu, et al. Influence of stream structure change on regulation capacity of river networks in Taihu Lake Basin[J]. Acta Geographica Sinica, 2016,71(3):449-458.
9 王跃峰,许有鹏,张倩玉,等.太湖平原区河网结构变化对调蓄能力的影响[J].地理学报,2016,71(3):449-458.
10 YANG Kai. Stream structure characteristics and its urbanization response in dense river network plain: A case study of Shanghai[D]. Shanghai: East China Normal University, 2006.
10 杨凯.平原河网地区水系结构特征及城市化响应研究[D].上海:华东师范大学,2006.
11 BELLETTI B, GARCIA de LEANIZ C, JONES J, et al. More than one million barriers fragment Europe's rivers[J]. Nature, 2020,588: 436-441.
12 PAN Wei. Reconstruction of spatial structure characteristics and research on related issues of surface water system in Shanghai area (1918-1978)[M]. Xi'an: Xi'an Map Press, 2015.
12 潘威.上海地区地表水系空间结构特征重建及相关问题研究(1918—1978)[M]. 西安:西安地图出版社,2015.
13 HOU Xin, PAN Wei. Reconstruction of river network structure in the Pearl River Delta Plain and its max channel storage capacity during1930s[J]. Tropical Geography,2015,35(6):883-889.
13 侯鑫,潘威.20世纪30年代珠江三角洲平原河网结构重建及最大槽蓄容量[J].热带地理,2015,35(6):883-889.
14 CHEN Xibo. Management and changes of the North Canal during the Era of water transportation[M]. Beijing: The Commercial Press, 2018.
14 陈喜波. 漕运时代北运河治理与变迁[M]. 北京:商务印书馆,2018.
15 ZHAO Zhen. Water transport of North Canal and Zhangjiawan River diversion in the Qing Dynasty[J]. Journal of Historical Science, 2018(3):57-65.
15 赵珍.清代北运河漕运与张家湾改道[J].史学月刊,2018(3):57-65.
16 ZHAO Zhen, CUI Ruide. The wetland restoration of the Yongding River in the Jingnan Plain during the Qianlong reign[J]. The Qing History Journal, 2019(1):30-39.
16 赵珍,崔瑞德.清乾隆朝京南永定河湿地恢复[J].清史研究,2019(1):30-39.
17 Beijing North Canal Management Office, Beijing Urban River and Lake Management Office. Flood and drought disasters in the North Canal[M]. Beijing: China Water Power Press,2003.
17 北京市北运河管理处,北京市城市河湖管理处. 北运河水旱灾害[M].北京:中国水利水电出版社, 2003.
18 XU Xinliang, ZHUANG Dafang, JIA Shaofeng, et al. Automated extraction of drainages in China based on DEM in GIS environment[J]. Resources and Environment in the Yangtze Basin, 2004, 13(4):343-348.
18 徐新良,庄大方,贾绍凤,等. GIS环境下基于DEM的中国流域自动提取方法研究[J].长江流域资源与环境,2004,13(4):343-348.
19 ZHANG Guoping, ZHAO Linna, XU Fengwen, et al. Study on basin partition scheme of China based on basin structure analysis[J]. Journal of Beijing Normal University (Natural Science), 2010,46(3):417-423.
19 张国平,赵琳娜,许凤雯,等.基于流域结构分析的中国流域划分方案[J].北京师范大学学报:自然科学版,2010,46(3):417-423.
20 XU Xinliang. A dataset of Chinese river basins and river networks extracted based on DEM [DS]. Registration and Publishing System of the Resource and Environment Science and Data Center, Chinese Academy of Sciences, 2018. DOI:10.12078/2018060101.
20 徐新良.基于DEM提取的中国流域、河网数据集[DS].中国科学院资源环境科学数据中心数据注册与出版系统,2018. DOI:10.12078/2018060101.
21 TAN Qixiang. The historical atlas of China[M]. Beijing:China Cartographic Publishing House, 1996.
21 谭其骧.中国历史地图集(全8册)(精)[M].北京:中国地图出版社,1996.
22 LI Guannan. Collection of Beijing historical maps(4)[M]. Beijing: Foreign Languages Press,2005.
22 李冠南.北京历史舆图集(第4卷)[M]. 北京:外文出版社, 2005.
23 Center for Historical Geographical Studies of Fudan University. CHGIS [EB/OL].(2007-09-27)[2020-07-13]..
23 复旦大学历史地理研究中心.中国历史地理信息系统(CHGIS)[EB/OL].(2007-09-27)[2020-07-13]..
24 Berman LEX.China river basins[EB/OL].[2020-07-13]. China Map, 2011. .
25 Codification Committee of Water Conservation Annals of Tianjin of Tianjin Water Conservancy Bureau. Water conservation annals of Tianjin[M]. Tianjin: Tianjin Science and Technology Press,2003.
25 天津市水利局水利志编纂委员会.天津水利志[M].天津:天津科学技术出版社,2003.
26 ZHOU Jiamei, Quansun MIU,et al. Chronicles of Shuntian prefecture[M]. Beijing: Beijing Classics Publishing House,1987.
26 周家楣,缪荃孙,等. (光绪)顺天府志.第1-16册[M].北京:北京古籍出版社,1987.
27 RUI Xiaofang. Principles of hydrology[M]. Beijing:China Water Power Press,2004.
27 芮孝芳.水文学原理[M].北京:中国水利水电出版社, 2004.
28 LIN Zhixin, XU Youpeng,DAI Xiaoying, et al. Effect of urbanization on the Plain River Network Structure in the Lower Reaches of the Yangtze River[J]. Resources and Environment in the Yangtze Basin,2019,28(11):2 612-2 620.
28 林芷欣,许有鹏,代晓颖,等.城市化进程对长江下游平原河网水系格局演变的影响[J].长江流域资源与环境,2019,28(11):2 612-2 620.
29 LUO Xian, XU Youpeng, XU Guanglai, et al. Study on impacts from water conservancy projects on river network connectivity—A case of Xizhaoxi River Sub-catchment of Taihu Lake Basin[J]. Water Resources and Hydropower Engineering,2012,43(9):12-15.
29 罗贤,许有鹏,徐光来,等.水利工程对河网连通性的影响研究——以太湖西苕溪流域为例[J].水利水电技术,2012,43(9):12-15.
30 DING Yuekui, ZHANG Hong, SHAN Baoqing. The spatial distribution and evolution trend of rivers in Hai River Basin[J]. Acta Scientiae Circumstantiae,2016,36(1):47-54.
30 丁越岿,张洪,单保庆.海河流域河流空间分布特征及演变趋势[J].环境科学学报,2016,36(1):47-54.
31 YUAN Wen, YANG Kai, TANG Min, et al. Stream structure characteristics and their impact on storage and flood control capacity in the urbanized plain river network[J]. Geographical Research, 2005, 24(5):717-724.
31 袁雯,杨凯,唐敏,等.平原河网地区河流结构特征及其对调蓄能力的影响[J].地理研究,2005(5):717-724.
32 SHEN Bing, HUANG Honghu. Principles of hydrology[M]. Second edition. Beijing: China Water Power Press,2015.
32 沈冰,黄红虎.水文学原理[M].第2版.北京:中国水利水电出版社, 2015.
33 LIN Zhixin, XU Youpeng, DAI Xiaoying, et al. Effect of urbanization on the river network structure and functions—A case study in Suzhou City[J]. Journal of Lake Sciences,2018,30(6):1 722-1 731.
33 林芷欣,许有鹏,代晓颖,等.城市化对平原河网水系结构及功能的影响——以苏州市为例[J].湖泊科学,2018,30(6):1 722-1 731.
34 WU Wentao. Beijing water conservancy history[M]. Beijing:People's Publishing House, 2013.
34 吴文涛. 北京水利史[M]. 北京:人民出版社, 2013.
Outlines

/