Form-flow Feedback within Blowouts at Different Developing Stages in the Gonghe Basin, Qinghai Province

  • Xuehua CHE ,
  • Wanyin LUO ,
  • Mei SHAO ,
  • Zhongyuan WANG
Expand
  • 1.Key Laboratory of Desert and Desertification,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.Beijing Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China
CHE Xuehua (1997-), female, Lüliang City, Shanxi Province, Master student. Research areas include aeolian geomorphology and physics of blown sand. E-mail: chexuehua19@mails.ucas.ac.cn
LUO Wanyin (1979-), male, Jingtai County, Gansu Province, Professor. Research areas include aeolian geomorphology and physics of blown sand. E-mail: wyluo@lzb.ac.cn

Received date: 2020-10-29

  Revised date: 2020-12-09

  Online published: 2021-03-19

Supported by

the National Natural Science Foundation of China "Mega-blowouts formation and its response to the environmental change"(41771015)

Abstract

Blowouts are the primary geomorphologic manifestation and driving force of sandy grassland desertification in the Gonghe Basin. However, their feedback mechanism between the flow dynamics and geomorphology is unclear. Two-dimensional ultrasonic anemometers and gradient sand traps were used in this study to measure the characteristics of wind flows and sediment transport at different blowouts of different developing stages in the Gonghe Basin. The feedback between the morphology-dynamic processes of the blowouts was discussed. Results show as follows. After entering the sand patch and small bowl blowout along the prevailing wind direction, air flow expanded and decelerated, and then accelerated until going outside the blowout; when entering a trough blowout of a small or medium size, it expanded and decelerated at the headwall, accelerated at the bottom of blowout, decelerated at the windward slope of the depositional lobe, and then recovered somewhat at the leeside slope of the depositional lobe. Besides, the wind speed was negatively correlated with steadiness of flow and directional steadiness in the early stage of blowout, but was positively correlated with the steadiness of flow and negatively correlated with the directional steadiness in the middle stage of blowout. Due to the rotating vortices in the blowout, the wind speed profiles in the trough blowout displayed a nonlogarithmic behavior. The measured sand flux density at different stations decreased exponentially with height. However, due to the feedback effect between flow dynamics and morphology, the sediment transport fluxes at different positions were obviously different, with the lowest at the bottom of the blowout and the largest in front of the windward slope of the deposition lobe. In conclusion, there is a form-flow feedback in the blowout, and the bigger the blowout is, the more obvious the feedback effect is.

Cite this article

Xuehua CHE , Wanyin LUO , Mei SHAO , Zhongyuan WANG . Form-flow Feedback within Blowouts at Different Developing Stages in the Gonghe Basin, Qinghai Province[J]. Advances in Earth Science, 2021 , 36(1) : 95 -109 . DOI: 10.11867/j.issn.1001-8166.2021.009

References

1 HESP P A, HYDE R. Flow dynamics and geomorphology of a trough blowout[J]. Sedimentology, 1996, 43: 505-525.
2 HESP P A. Foredunes and blowouts: Initiation, geomorphology and dynamics[J]. Geomorphology, 2002, 48: 245-268.
3 CARTER R W G, HESP P A, NORDSTROM K F. Erosional landforms in coastal dunes[C]// NORDSTROM K F, PSUTY N P, CARTER R W G. Coastal dunes: Form and process. Wiley: London, 1990: 217-249.
4 FRASER G S, BENNET S W, OLYPHANT G A, et al. Windflow circulation patterns in a coastal dune blowout, south coast of Lake Michigan[J]. Journal of Coastal Research, 1998, 14: 451-460.
5 SMYTH T A G, JACKSON D W T, COOPER J A G. Three dimensional air?ow patterns within a coastal trough-bowl blowout during fresh breeze to hurricane force winds[J]. Aeolian Research, 2013, 9: 111-123.
6 HUGENHOLTZ C H, WOLFE S A. Morphodynamics and climate controls of two aeolian blowouts on the northern Great Plains, Canada[J]. Earth Surface Processes and Landforms, 2006, 31: 1 540-1 557.
7 LI Shuangquan, HASI Eerdun, DU Huishi, et al. Interaction between airflow and shape of saucer blowout in grassland[J]. Journal of Desert Research, 2012, 32(5): 1 201-1 209.
7 李双权, 哈斯, 杜会石, 等. 沙质草地碟形风蚀坑形态-气流相互作用[J]. 中国沙漠, 2012, 32(5): 1 201-1 209.
8 WANG Shuai, HASI Eerdun, ZHANG Jun, et al. Geomorphological significance of air flow over saucer blowout of the Hulun Buir Sandy Grassland[J]. Journal of Desert Research, 2007, 27(5): 745-749.
8 王帅, 哈斯, 张军, 等. 呼伦贝尔沙质草原碟形风蚀坑表面气流及其意义[J]. 中国沙漠, 2007, 27(5): 745-749.
9 WANG Shuai, HASI Eerdun. Air flow dynamics of the blowout trough in the Hulun Buir Sandy Grassland[J]. Science of Soil and Water Conservation, 2009, 7(2): 80-85.
9 王帅, 哈斯. 呼伦贝尔沙质草原槽形风蚀坑表面气流特征[J]. 中国水土保持科学, 2009, 7(2): 80-85.
10 SUN Yu, DU Huishi, HASI Eerdun, et al. Aeolian dynamical process of blowout on the fixed dune[J]. Acta Geographica Sinica, 2016, 71(9): 1 562-1 570.
10 孙禹, 杜会石, 哈斯额尔敦, 等. 固定沙丘风蚀坑风沙动力学观测研究[J]. 地理学报, 2016, 71(9): 1 562-1 570.
11 HU Rina, HASI Eerdun, HAOBISI Halatu, et al. Dynamic changes of blowouts on fixed sand dunes in the southeastern fringe of Otindag Sandy Land[J]. Journal of Desert Research, 2019, 39(1): 37-46.
11 胡日娜, 哈斯额尔敦, 浩毕斯哈拉图, 等. 浑善达克沙地东南缘固定沙丘风蚀坑动态变化[J]. 中国沙漠, 2019, 39(1): 37-46.
12 LUO W Y, WANG Z Y, SHAO M, et al. Historical evolution and controls on mega‐blowouts in northeastern Qinghai‐Tibetan Plateau, China[J]. Geomorphology, 2019, 329: 17-31.
13 LUO W Y, WANG Z Y, LU J F, et al. Mega‐blowouts in Qinghai-Tibet Plateau: Morphology, distribution and initiation[J]. Earth Surface Processes and Landforms, 2019, 44(2): 449-458.
14 HUGENHOLTZ C H, WOLFE S A. Form-flow interactions of an aeolian saucer blowout[J]. Earth Surface Processes and Landforms, 2009, 34: 919-928.
15 HESP P A, PRINGLE A. Flow behaviour in a trough blowout. Tangimoana, New Zealand[J]. Journal of Coastal Research, 2001, 34(special issue): 597-601.
16 HESP P A, SMYTH T A G, WALKER I J, et al. Flow within a trough blowout at cape cod[J]. Journal of Coastal Research, 2016, 75(special issue):288-292.
17 DECH J P, MAUN M A, PAZNER M I. Blowout dynamics on lake huron sand dunes: Analysis of digital multispectral data from colour air photos[J]. Catena, 2005, 60(2): 165-180.
18 LUO W Y, SHAO M, CHE X H, et al. Optimization of UAVs-SfM data collection in aeolian landform morphodynamics: A case study from the Gonghe Basin, China[J]. Earth Surface Processes and Landforms, 2020, 45: 3 293-3 312.
19 SMYTH T A G, JACKSON D W T, COOPER J A G. Computational fluid dynamic modelling of Three-Dimensional airflow over dune blowouts[J]. Journal of Coastal Research, 2011, 64(special issue): 314-318.
20 SMYTH T A G, JACKSON D W T, COOPER J A G. High resolution measured and modelled three-dimensional airflow over a coastal bowl blowout[J]. Geomorphology, 2012, 177/178: 62-73.
21 ZHANG A MungkDalai, WANG Xiaoke, HASI Eerdun, et al. HulunBuir Sandy Grassland blowouts: Geomorphology,classification,and significances[J]. Journal of Desert Research, 2006, 26(6): 894-902.
21 张德平, 王效科, 哈斯, 等.呼伦贝尔沙质草原风蚀坑研究(I)——形态、分类、研究意义[J]. 中国沙漠, 2006, 26(6): 894-902.
22 ZHANG A MungkDalai, SUN Hongwei, WANG Xiaoke, et al. HulunBuir Sandy Grassland blowouts (II): Process of development and landscape evolution[J]. Journal of Desert Research, 2007, 27(1): 20-24.
22 张德平, 孙宏伟, 王效科, 等. 呼伦贝尔沙质草原风蚀坑研究(II): 发育过程[J]. 中国沙漠, 2007, 27(1): 20-24.
23 ZHANG A MungkDalai, WANG Xiaoke, HURRLE U, et al. HulunBuir Sandy Grassland blowouts (III): Influence of Soil Layer and Microrelief[J]. Journal of Desert Research, 2007, 27(1): 25-31.
23 张德平, 王效科, 胡日乐, 等. 呼伦贝尔沙质草原风蚀坑研究(III): 微地貌和土层的影响[J]. 中国沙漠, 2007, 27(1): 25-31.
24 ZHANG A MungkDalai, WANG Xiaoke, SUN Hongwei, et al. HulunBuir Sandy Grassland blowouts: Influence of human activities[J]. Journal of Desert Research, 2007, 27(2): 214-220.
24 张德平, 王效科, 孙宏伟, 等. 呼伦贝尔沙质草原风蚀坑研究(IV): 人类活动的影响[J]. 中国沙漠, 2007, 27(2): 214-220.
25 SHI Peijun. Theory of the surface morphological characteristics and development process of desertified land in Daqinggou area, Southern Horqin[J]. Journal of Inner Mongolia Normal University (Natural Science Edition),1986(1): 45-56.
25 史培军.试论科尔沁南部大青沟地区沙漠化土地的地表形态特征及其发育过程[J]. 内蒙古师大学报:自然科学版,1986(1):45-56.
26 YANG Gensheng, LIU Yangxuan, LI Changzhi, et al. Characteristics of aeolian sand at different developmental stages of desertification: A case study of Daqinggou typical area in the southern Horqin sandy land[J]. Environmental Protection of Xinjiang, 1987(2):8-15.
26 杨根生, 刘阳宣, 李长治, 等. 沙漠化不同发育阶段的风沙特征——以科尔沁沙地南部大青沟典型区为例[J]. 新疆环境保护, 1987(2):8-15.
27 ZHANG Shaoyun, DONG Yuxiang. Research progress on morphodynamics of coastal sandy blowout[J]. Advances in Earth Science, 2019, 34(10):1 028-1 037.
27 张绍云, 董玉祥. 海岸沙地风蚀坑形态—动力学研究进展[J]. 地球科学进展,2019, 34(10): 1 028-1 037.
28 ZHUANG Yanmei, Si HA. Progress of the study on shapes and dynamical process of blowout on dunes[J]. Arid Zone Research, 2005(5): 632-637.
28 庄燕美, 哈斯. 沙丘风蚀坑的形态及动力过程的研究进展[J]. 干旱区地理, 2005(5): 632-637.
29 SUN Yu, DU Huishi, LIU Meiping, et al. A review on morphodynamic processes of blowouts[J]. Science Geographica Sinica, 2015, 35(7): 898-904.
29 孙禹, 杜会石, 刘美萍, 等. 风蚀坑形态——动力学研究进展[J]. 地理科学, 2015, 35(7): 898-904.
30 WANG Zhongyuan, LUO Wanyin, DONG Zhibao, et al. Grain size characteristics of the blowout surface sediments and its aerodynamic significance in the alpine meadow region of Gonghe Basin[J]. Journal of Desert Research, 2017, 37(1): 7-16.
30 王中原, 罗万银, 董治宝, 等. 共和盆地高寒草原风蚀坑表层沉积物粒度特征及动力学意义[J]. 中国沙漠, 2017, 37(1): 7-16.
31 DONG Guangrong, GAO Shangyu, JIN Jiong. Land desertification and its control in Gonghe Basin, Qinghai Province[M]. Beijing: Science Press, 1993.
31 董光荣, 高尚玉, 金炯. 青海共和盆地土地沙漠化与防治途径[M]. 北京:科学出版社, 1993.
32 ZHANG Dengshan, GAO Shangyu, SHI Mengyi, et al. Sandy desertification and its control in the Qinghai Plateau[M]. Beijing: Science Press, 2009.
32 张登山, 高尚玉, 石蒙沂, 等. 青海高原土地沙漠化及其防治[M]. 北京: 科学出版社, 2009.
33 CHEN Zongyan, DONG Zhibao, WANG Qingchun. Wind regime and dune field patterns in the Gonghe Basin, Qinghai, China[J]. Journal of Desert Research, 2018, 38(3): 492-499.
33 陈宗颜, 董治宝, 汪青春.青海共和盆地风况及风沙地貌[J]. 中国沙漠, 2018, 38(3): 492-499.
34 CHEN Zongyan, DONG Zhibao, Chongyi E, et al. Characteristics of wind regime and its variation trend in the Gonghe Basin from 1971 to 2015[J]. Journal of Lanzhou University:Natural Sciences, 2020(2): 224-230.
34 陈宗颜, 董治宝, 鄂崇毅, 等. 1971—2015年共和盆地风况特征及变化趋势[J]. 兰州大学学报:自然科学版, 2020(2): 224-230.
35 ZHU Zhenda, CHEN Guangting. Sandy desertification of land in China[M]. Beijing: Science Press,1994.
35 朱震达, 陈广庭. 中国土地沙质荒漠化[M]. 北京: 科学出版社, 1994.
36 Minghua Lü, YAN Jiangyu, YAO Rentai, et al. Study on the statistical method of wind direction[J]. Journal of Meteorology and Environment, 2012, 28(3): 83-89.
36 吕明华, 闫江雨, 姚仁太, 等. 风向的统计方法研究[J]. 气象与环境学报, 2012, 28(3): 83-89.
37 WU Zheng. Aeolian landform and sand control engineering[M]. Beijing: Science Press, 2003.
37 吴正. 风沙地貌与治沙工程学[M]. 北京:科学出版社, 2003.
38 LIU Panfeng. Analysis of annual air density variation in Qinghai lake region[J]. Journal of Qinghai University (Nature Science), 2010(2): 14-15.
38 刘攀峰. 青海湖地区空气密度年变化分析[J]. 青海大学学报:自然科学版, 2010(2): 14-15.
39 ANDERSON J L, WALKER I J. Airflow and sand transport variations within a backshore-parabolic dune plain complex: NE Graham Island, British Columbia, Canada[J]. Geomorphology, 2006, 77: 17-34.
40 WALKER I J, NICKLING W G. Simulation and measurement of surface shear stress over isolated and closely spaced transverse dunes[J]. Earth Surface Processes and Landforms, 2003, 28: 1 111-1 124.
41 QU Jianjun, HUANG Ning, Wanquan TA, et al. Structural characteristics of gobi sand-drift and its significance[J]. Advances in Earth Science, 2005, 20(1): 19-23.
41 屈建军, 黄宁, 拓万全, 等. 戈壁风沙流结构特性及其意义[J]. 地球科学进展, 2005, 20(1): 19-23.
42 HE Qing, HU Wenfeng, YANG Xinghua, et al. Research on wind profile and sand drift structure in Guaizi Lake Region in the Badain Jaran Desert[J]. Arid Zone Research, 2012, 29(3): 517-523.
42 何清, 胡文峰, 杨兴华, 等.巴丹吉林沙漠拐子湖地区贴地层风速廓线和风沙流结构特征[J]. 干旱区研究, 2012, 29(3): 517-523.
43 LI G, ZHANG J, HERRMANN H J, et al. Study of aerodynamic grain entrainment in aeolian transport[J]. Geophysical Research Letters, 2020, 47: e2019GL086574. DOI:10.1029/2019GL086574.
44 HUANG N, HE P, ZHANG J. Large-eddy simulation of sand transport under unsteady wind[J]. Geomorphology, 2020. DOI:10.1016/j.geomorph. 2020. 107105.
45 DONG Z B, LU J F, MAN D Q, et al. Equations for the near‐surface mass flux density profile of wind‐blown sediments[J]. Earth Surface Processes and Landforms, 2011, 36: 1 292-1 299.
46 SMYTH T A G, JACKSON D, COOPER A. Airflow and aeolian sediment transport patterns within a coastal trough blowout during lateral wind conditions[J]. Earth Surface Processes and Landforms, 2014, 39(14): 1 847-1 854.
47 PEASE P, GARES P. The influence of topography and approach angles on local deflections of airflow within a coastal blowout[J]. Earth Surfaces Processes and Landforms, 2013, 38: 1 160-1 169.
Outlines

/