The Application of Leaf Wax n-alkanes δD in Aeolian Sediments as a Proxy for Reconstructing Quaternary Humidity Variations in the Monsoonal East Asia
Received date: 2020-11-28
Revised date: 2020-12-24
Online published: 2021-03-19
Supported by
the National Natural Science Foundation of China "The climate-vegetation variation over the past four glacial-interglacial cycles in middle latitude of Northern Hemisphere: Loess record"(41920104005);"Climate change and its impacts on hydrology and water resources in the Yangtze and Mekong River basins"(42011530119)
Leaf wax n-alkanes are widely distributed in sediments; they have a clear formation process, and they are resistance to environment change. δD composition of leaf wax n-alkanes is a newly developed biogeochemistry proxy with great potential in paleoenvironment reconstruction. In this paper, we reviewed the formation process of leaf wax n-alkanes and their hydrogen isotopic fraction, evaluated the relationship between leaf wax n-alkanes δD and regional humidity, and summarized recent applications of them to paleoclimate reconstruction. Based on the studies of n-alkanes δD of surface sediments, we find n-alkanes δD is a good proxy indicator of humidity in semiarid and arid climate region in monsoonal East Asia. Compared with other proxies from loess-paleosol sequences, the n-alkanes δD is a direct indicator of humidity variations; it shows direct response to environment change, and it reveals precession signal of solar insolation variations in orbital timescales paleoclimate record. In this case, the n-alkanes δD is a good proxy for humidity variations in sedimentary records in East Asia monsoon region, and, further research on the influence of the variations of precipitation isotope and local isotope fraction process to the n-alkanes δD is compulsively needed.
Key words: n-alkanes δD; Paleo-humidity reconstruction; Loess; Semi-arid regions; Asia monsoon
Chenghong LIANG , Huayu LU . The Application of Leaf Wax n-alkanes δD in Aeolian Sediments as a Proxy for Reconstructing Quaternary Humidity Variations in the Monsoonal East Asia[J]. Advances in Earth Science, 2021 , 36(1) : 45 -57 . DOI: 10.11867/j.issn.1001-8166.2021.011
1 | DING Yihui,REN Guoyu,SHI Guangyu,et al. National assessment report of climate change (Ⅰ): Climate change in China and its future trend [J]. Advance in Climate Change Research,2006(1): 3-8. |
1 | 丁一汇,任国玉,石广玉,等. 气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J]. 气候变化研究进展,2006(1): 3-8. |
2 | HUANG Jianping,CHEN Wen,WEN Zhiping,et al. Review of chinese atmospheric science research over the past 70 years: Climate and climate change[J]. Science China Earth Sciences,2019,49: 1 607-1 640. DOI:10.1360/SSTe-2019-0125. |
2 | 黄建平,陈文,温之平,等. 新中国成立70年以来的中国大气科学研究: 气候与气候变化篇[J]. 中国科学:地球科学,2019,49: 1 607-1 640. DOI:10.1360/SSTe-2019-0125. |
3 | LUAN Yihua,YU Yongqiang,ZHENG Weipeng. Review of development and application of high resolution global climate system model[J]. Advances in Earth Science,2016,31(3): 258-268. |
3 | 栾贻花,俞永强,郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展,2016,31(3): 258-268. |
4 | TAPIADOR F J,NAVARRO A,LEVIZZANI V,et al. Global precipitation measurements for validating climate models[J]. Atmospheric Research,2017,197:1-20. |
5 | DENG Chenglong,LIU Qingsong,PAN Yongxin,et al. Environmental magnetism of chinese loess-paleosol sequences[J]. Quaternary Research,2007(2): 193-209. |
5 | 邓成龙,刘青松,潘永信,等. 中国黄土环境磁学[J]. 第四纪研究,2007(2): 193-209. |
6 | ZHANG Wenchao,LU Huayu,LI Chunhai,et al. Pollen preservation and its potential influence on paleoenvironmental reconstruction in chinese loess deposits[J]. Review of Palaeobotany and Palynology,2017,240:1-10. |
7 | Eglinton T I,Eglinton G. Molecular proxies for paleoclimatology[J]. Earth and Planetary Science Letters,2008,275(1): 1-16. |
8 | LIU Weiguo,HUANG Yongsong. Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau[J]. Organic Geochemistry,2005,36(6): 851-860. |
9 | XIE Shucheng,CHEN Fahu,WANG Zhiyuan,et al. Lipid distributions in loess-paleosol sequences from northwest China[J]. Organic Geochemistry,2003,34(8): 1 071-1 079. |
10 | SACHSE D,BILLAULT I,BOWEN G J,et al. Molecular paleohydrology: Interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms[J]. Annual Review of Earth and Planetary Sciences,2012,40(1): 221-249. |
11 | EGLINTON G,HAMILTON R J. Leaf epicuticular waxes[J]. Science,1967,156(3 780): 1 322-1 346. |
12 | SCHMIDT M W I,TORN M S,ABIVEN S,et al. Persistence of soil organic matter as an ecosystem property[J]. Nature,2011,478(7 367): 49-56. |
13 | MURPHY D J. Plant lipids: Biology,utilisation and manipulation[M]. United States: John Wiley & Sons,2005. |
14 | LI Jingjing,HUANG Junhua,XIE Shucheng. Plant wax and its response to environmental conditions: An overview[J]. Acta Ecologica Sinica,2011,31(2): 565-574. |
14 | 李婧婧,黄俊华,谢树成. 植物蜡质及其与环境的关系[J]. 生态学报,2011,31(2): 565-574. |
15 | YEATS T H,ROSE J K C. The formation and function of plant cuticles[J]. Plant Physiology,2013,163(1): 5-20. |
16 | WANG Dongyang,SHAO Shujun,JI Nana,et al. Research advances on genes related to plant cuticular wax synthesis and secretion[J]. Plant Physiology Journal,2016,52(6): 789-798. |
16 | 王东阳,邵淑君,季娜娜,等. 植物表皮蜡质合成与分泌基因研究进展[J]. 植物生理学报,2016,52(6): 789-798. |
17 | DENG Caixia. Plant physiology[M]. Beijing: Chinese Forestry Publishing Press, 2013. |
17 | 邓彩霞. 植物生理学[M]. 北京: 中国林业出版社,2013. |
18 | BUSH R T,MCINERNEY F A. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy[J]. Geochimica et Cosmochimica Acta,2013,117:161-179. |
19 | ZHANG Zhaohui,ZHAO Meixun,Eglinton G,et al. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170kyr[J]. Quaternary Science Reviews,2006,25(5/6): 575-594. |
20 | ZHOU Bin,Wali G,Peterse F,et al. Organic carbon isotope and molecular fossil records of vegetation evolution in central Loess Plateau since 450 kyr[J]. Science China Earth Sciences,2016,59(6): 1 206-1 215. |
21 | LIU Jianrong,SONG Xianfang,YUAN Guofu,et al. Stable isotopic compositions of precipitation in China[J]. Tellus B: Chemical and Physical Meteorology,2014,66(1): 22 517-22 567. |
22 | DOUGLAS P M J,PAGANI M,BRENNER M,et al. Aridity and vegetation composition are important determinants of leaf-wax δD values in southeastern Mexico and Central America[J]. Geochimica et Cosmochimica Acta,2012,97:24-45. |
23 | SPRENGER M,LEISTERT H,GIMBEL K,et al. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes[J]. Reviews of Geophysics,2016,54(3): 674-704. |
24 | CERNUSAK L A,BARBOUR M M,ARNDT S K,et al. Stable isotopes in leaf water of terrestrial plants[J]. Plant,Cell & Environment,2016,39(5): 1 087-1 102. |
25 | GAO Li,HUANG Yongsong. Inverse gradients in leaf wax δD and δ13C values along grass blades of Miscanthus sinensis: Implications for leaf wax reproduction and plant physiology[J]. Oecologia,2013,172(2): 347-357. |
26 | CORMIER M,WERNER R A,SAUER P E,et al. 2H-fractionations during the biosynthesis of carbohydrates and lipids imprint a metabolic signal on the δ2H values of plant organic compounds[J]. New Phytologist,2018,218(2): 479-491. |
27 | GAMARRA B,KAHMEN A. Concentrations and δ2H values of cuticular n-alkanes vary significantly among plant organs,species and habitats in grasses from an alpine and a temperate European grassland[J]. Oecologia,2015,178(4): 981-998. |
28 | LIU Jinzhao,LIU Weiguo,AN Zhisheng. Insight into the reasons of leaf wax δD n-alkane values between grasses and woods[J]. Science Bulletin,2015,60(5): 549-555. |
29 | LIU Jinzhao,AN Zhisheng. A hierarchical framework for disentangling different controls on leaf wax-alkane δD values in terrestrial higher plants[J]. Quaternary Science Reviews,2018,201:409-417. |
30 | LIU Jinzhao,AN Zhisheng. Variations in hydrogen isotopic fractionation in higher plants and sediments across different latitudes: Implications for paleohydrological reconstruction[J]. Science of the Total Environment,2019,650: 470-478. |
31 | SARANGI V,KUMAR A,SANYAL P. Effect of pedogenesis on the stable isotopic composition of calcretes and n-alkanes: Implications for palaeoenvironmental reconstruction[J]. Sedimentology,2018,66(5): 1 560-1 579. |
32 | SACHSE D,RADKE J,GLEIXNER G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability[J]. Geochimica et Cosmochimica Acta,2004,68(23): 4 877-4 889. |
33 | RAO Zhiguo,ZHU Zhaoyu,JIA Guodong,et al. Compound specific δD values of long chain n-alkanes derived from terrestrial higher plants are indicative of the δD of meteoric waters: Evidence from surface soils in eastern China[J]. Organic Geochemistry,2009,40(8): 922-930. |
34 | POLISSAR P J,FREEMAN K H. Effects of aridity and vegetation on plant-wax δD in modern lake sediments[J]. Geochimica et Cosmochimica Acta,2010,74(20): 5 785-5 797. |
35 | AICHNER B,HERZSCHUH U,WILKES H,et al. δD values of n-alkanes in Tibetan lake sediments and aquatic macrophytes—A surface sediment study and application to a 16ka record from Lake Koucha[J]. Organic Geochemistry,2010,41(8): 779-790. |
36 | GARCIN Y,SCHWAB V F,GLEIXNER G,et al. Hydrogen isotope ratios of lacustrine sedimentary n-alkanes as proxies of tropical African hydrology: Insights from a calibration transect across Cameroon[J]. Geochimica et Cosmochimica Acta,2012,79:106-126. |
37 | HUANG Xianyu,MEYERS P A,XUE Jiantao,et al. Paleoclimate significance of n-alkane molecular distributions and δ2H values in surface peats across the monsoon region of China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2016,461:77-86. |
38 | WANG Chaoran,Hren M T,Hoke G D,et al. Soil n-alkane δD and Glycerol Dialkyl Glycerol Tetraether (GDGT) distributions along an altitudinal transect from southwest China: Evaluating organic molecular proxies for paleoclimate and paleoelevation[J]. Organic Geochemistry,2017,107:21-32. |
39 | DANIELS W C,RUSSELL J M,GIBLIN A E,et al. Hydrogen isotope fractionation in leaf waxes in the Alaskan Arctic tundra[J]. Geochimica et Cosmochimica Acta,2017,213:216-236. |
40 | Herrmann N,Boom A,Carr A S,et al. Hydrogen isotope fractionation of leaf wax n-alkanes in southern African soils[J]. Organic Geochemistry,2017,109:1-13. |
41 | TIAN Qian,FANG Xiaomin,WANG Mingda. Sedimentary n-alkanes record of precipitation D/H ratios in arid regions of the Tibetan Plateau[J]. Chinese Science Bulletin,2017,62(7): 700-710. |
41 | 田茜,方小敏,王明达. 青藏高原干旱区湖泊正构烷烃氢同位素记录降水同位素[J]. 科学通报,2017,62(7): 700-710. |
42 | HOU Juzhi,TIAN Qian,WANG Mingda. Variable apparent hydrogen isotopic fractionation between sedimentary n-alkanes and precipitation on the Tibetan Plateau[J]. Organic Geochemistry,2018,122:78-86. |
43 | LI Yangyang,YANG Shiling,LUO Pan,et al. Aridity-controlled hydrogen isotope fractionation between soil n-alkanes and precipitation in China[J]. Organic Geochemistry,2019,133:53-64. |
44 | LIU Weiguo,WANG Huanye,LENG Qin,et al. Hydrogen isotopic compositions along a precipitation gradient of Chinese Loess Plateau: Critical roles of precipitation/evaporation and vegetation change as controls for leaf wax δD[J]. Chemical Geology,2019,528:119278. |
45 | LU Jiayi,ZANG Jingjie,Meyers P,et al. Surface soil n-alkane molecular and δD distributions along a precipitation transect in northeastern China[J]. Organic Geochemistry,2020. DOI:10.1016/j.orggeochem.2020.104015. |
46 | Struck J,Bliedtner M,Strobel P,et al. Leaf waxes and hemicelluloses in topsoils reflect the δ2H and δ18O isotopic composition of precipitation in mongolia[J]. Frontiers in Earth Science,2020,8:343. DOI:10.3389/feart.2020.00343. |
47 | Bowen G J,Revenaugh J. Interpolating the isotopic composition of modern meteoric precipitation[J]. Water Resources Research,2003,39(10). DOI: 10.1029/2003WR002086. |
48 | Zomer R J,Trabucco A,Bossio D A,et al. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. [J]. Agriculture,Ecosystems & Environment,2008,126(1/2):67-80. |
49 | HOU Juzhi,Andrea W J D,HUANG Yongsong. Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field,model,and experimental assessments[J]. Geochimica et Cosmochimica Acta,2008,72(14): 3 503-3 517. |
50 | CHENG Hai,AI Siben,WANG Xianfeng,et al. Oxygen isotope records of stalagmites from southern China[J]. Quaternary Research,2005(2): 157-163. |
50 | 程海,艾思本,王先锋,等. 中国南方石笋氧同位素记录的重要意义[J]. 第四纪研究,2005(2): 157-163. |
51 | CHENG Hai,ZHANG Haiwei,ZHAO Jingyao,et al. Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science China Earth Sciences,2019,49(10): 1 565-1 589. |
51 | 程海,张海伟,赵景耀,等. 中国石笋古气候研究的回顾与展望[J]. 中国科学:地球科学,2019,49(10): 1 565-1 589. |
52 | ZHANG Haiwei,Ait Brahim Y,LI Hanying,et al. The Asian Summer Monsoon: Teleconnections and forcing mechanisms—A review from chinese speleothem δ18O Records[J]. Quaternary,2019,2:26. |
53 | HE Chengfei,LIU Zhenyu,Otto-Bliesner B L,et al. Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation[J]. Science Advances,2021,7(4): e2611. DOI:10.1126/sciadv.abe2611. |
54 | LIU Zhenyu,WEN Xinyu,Brady E C,et al. Chinese cave records and the East Asia summer monsoon[J]. Quaternary Science Reviews,2014,83:115-128. |
55 | TAN Liangcheng,LI Yanzhen,WANG Xiqian,et al. Holocene monsoon change and abrupt events on the western Chinese Loess Plateau as revealed by accurately dated stalagmites[J]. Geophysical Research Letters,2020,47(21). DOI:10.1029/2020GL090273. |
56 | HUANG Xianyu,MEYERS P A. Assessing paleohydrologic controls on the hydrogen isotope compositions of leaf wax n-alkanes in chinese peat deposits[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2019,516:354-363. |
57 | CHEN Qingmin,ZHOU Weijian,WANG Zhe,et al. Holocene precipitation records from Inner Mongolia derived from hydrogen isotope compositions of sediment fatty acids[J]. Radiocarbon,2019,61(1): 51-65. |
58 | HUANG Xianyu,Pancost R D,XUE Jiantao,et al. Response of carbon cycle to drier conditions in the mid-Holocene in central China[J]. Nature Communications,2018,9(1). DOI:10.1038/s41467-018-03804-w. |
59 | Seki O,Meyers P A,Yamamoto S,et al. Plant-wax hydrogen isotopic evidence for postglacial variations in delivery of precipitation in the monsoon domain of China[J]. Geology,2011,39(9): 875-878. |
60 | WANG Xinxin,HUANG Xianyu,Sachse D,et al. Molecular paleoclimate reconstructions over the last 9 ka from a peat sequence in south China[J]. PLoS One,2016,11(8): e160934. DOI:10.1371/journal.pone.0160934. |
61 | Aichner B,Feakins S J,Lee J E,et al. High-resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid central Asia[J]. Climate of the Past,2015,11(4): 619-633. |
62 | Günther F,Witt R,Schouten S,et al. Quaternary ecological responses and impacts of the Indian ocean summer monsoon at Nam No,southern Tibetan Plateau[J]. Quaternary Science Reviews,2015,112:66-77. |
63 | HOU Juzhi,D'Andrea W J,WANG Mingda,et al. Influence of the Indian monsoon and the subtropical jet on climate change on the Tibetan Plateau since the late Pleistocene[J]. Quaternary Science Reviews,2017,163:84-94. |
64 | RAO Zhiguo,JIA Guodong,LI Yunxia,et al. Asynchronous evolution of the isotopic composition and amount of precipitation in north China during the Holocene revealed by a record of compound-specific carbon and hydrogen isotopes of long-chain n-alkanes from an alpine lake[J]. Earth and Planetary Science Letters,2016,446:68-76. |
65 | LIU Weiguo,LIU Hu,WANG Zheng,et al. Hydrogen isotopic compositions of long-chain leaf wax n-alkanes in Lake Qinghai sediments record palaeohydrological variations during the past 12 ka[J]. Quaternary International,2017,449:67-74. |
66 | Thomas E K,HUANG Yongsong,Clemens S C,et al. Changes in dominant moisture sources and the consequences for hydroclimate on the northeastern Tibetan Plateau during the past 32 kyr[J]. Quaternary Science Reviews,2016,131:157-167. |
67 | ZHANG Can,ZHAO Cheng,YU Zicheng,et al. Western Pacific Ocean influences on monsoon precipitation in the southwestern Chinese Loess Plateau since the mid-Holocene[J]. Climate Dynamics,2020,54(5): 3 121-3 134. |
68 | HUANG Enqing,CHEN Yunru,Schefu? E,et al. Precession and glacial-cycle controls of monsoon precipitation isotope changes over East Asia during the Pleistocene[J]. Earth and Planetary Science Letters,2018,494:1-11. |
69 | Thomas E K,Clemens S C,Prell W L,et al. Temperature and leaf wax delta H-2 records demonstrate seasonal and regional controls on Asian monsoon proxies[J]. Geology,2014,42(12): 1 075-1 078. |
70 | Thomas E K,Clemens S C,SUN Youbin,et al. Heterodynes dominate precipitation isotopes in the East Asian monsoon region,reflecting interaction of multiple climate factors[J]. Earth and Planetary Science Letters,2016,455:196-206. |
71 | LI Yangyang,YANG Shiling,XIAO Jule,et al. Hydrogen isotope ratios of leaf wax n-alkanes in loess and floodplain deposits in northern China since the Last Glacial Maximum and their paleoclimatic significance[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2018,509:91-97. |
72 | WANG Zheng,AN Zhisheng,LIU Zhonghui,et al. Hydroclimatic variability in loess δD wax records from the central Chinese Loess Plateau over the past 250?ka[J]. Journal of Asian Earth Sciences,2018,155:49-57. |
73 | LU Huayu,YI Shuangwen,LIU Zhenyu,et al. Variation of East Asian monsoon precipitation during the past 21 k.y. and potential CO2 forcing[J]. Geology,2013,41(9): 1 023-1 026. |
74 | XU Zhiwei,Mason J A,XU Chi,et al. Critical transitions in chinese dunes during the past 12,000 years[J]. Science Advances,2020,6(9): p.eaay8020. DOI:10.1126/sciadv.aay8020. |
75 | HU Pengxiang,LIU Qingsong. The production and transformation of magnetic minerals during pedogenesis and its paleoclimate significance[J]. Quaternary Sciences,2014,34(3): 458-473. |
75 | 胡鹏翔,刘青松. 磁性矿物在成土过程中的生成转化机制及其气候意义[J]. 第四纪研究,2014,34(3): 458-473. |
76 | LU Huayu,AN Zhisheng. Paleoclimate significance of grain size distribution of loess in Chinese Loess Plateau[J]. Science China Earth Sciences,1998(3): 278-283. |
76 | 鹿化煜,安芷生. 黄土高原黄土粒度组成的古气候意义[J]. 中国科学:D辑,1998(3): 278-283. |
77 | SUN Donghuai,LU Huayu,David R,et al. Bimode grain -size distribution of chinese loess and its paleoclimate implication [J]. Acta Sedimentologica Sinica, 2000,18(3): 327-335. |
77 | 孙东怀,鹿化煜,David R,等. 中国黄土粒度的双峰分布及其古气候意义[J]. 沉积学报,2000,18(3): 327-335. |
78 | RAO Zhiguo,GUO Wenkang,CAO Jiantao,et al. Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: A global review[J]. Earth-Science Reviews,2017,165:110-119. |
79 | LU Huayu,ZHANG Hongyan,ZENG Lin,et al. Temperature forced vegetation variations in glacial-interglacial cycles in northeastern China revealed by loess-paleosol deposit[J]. Quaternary Sciences,2015,35(4): 828-836. |
79 | 鹿化煜,张红艳,曾琳,等. 温度影响东北地区更新世植被变化的黄土记录[J]. 第四纪研究,2015,35(4): 828-836. |
80 | HELLER F,LIU Dongsheng. Palaeoclimatic and sedimentary history from magnetic susceptibility of loess in China[J]. Geophysical Research Letters,1986,13(11): 1 169-1 172. |
81 | H?GGI C,EGLINTON T I,ZECH W,et al. A 250 ka leaf-wax δD record from a loess section in Darai Kalon,Southern Tajikistan[J]. Quaternary Science Reviews,2019,208:118-128. |
82 | LASKAR J,ROBUTEL P,JOUTEL F,et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics,2004,428(1): 261-285. |
83 | CHENG Hai,EDWARDS R L,SINHA A,et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature,2016,534:640-646. |
84 | WANG Yongjin,CHENG Hai,Edwards R L,et al. The Holocene Asian Monsoon: Links to solar changes and North Atlantic climate[J]. Science,2005,308(5 723): 854-857. |
85 | LIU Dongsheng,DING Zhongli. Chinese loess and the paleomonsoon[J]. Annual Review of Earth and Planetary Sciences,1998,26:111-145. |
86 | LISIECKI L E,RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography,2005,20(1). DOI:10.1029/2004PA001071. |
87 | LU Huayu,WANG Yao. What caused the ice age?[J]. Chinese Science Bulletin,2016,61(11): 1 164-1 172. |
87 | 鹿化煜,王珧. 触发和驱动第四纪冰期的机制是什么?[J]. 科学通报,2016,61(11): 1 164-1 172. |
88 | WANG Pinxian. Orbital forcing of the low-latitude processes[J]. Quaternary Research,2006,26(5): 694-701. |
88 | 汪品先. 低纬过程的轨道驱动[J]. 第四纪研究,2006,26(5): 694-701. |
89 | CRAIG H. Isotopic variations in meteoric waters[J]. Science,1961,133(3 465): 1 702-1 703. |
90 | RACH O,KAHMEN A,BRAUER A,et al. A dual-biomarker approach for quantification of changes in relative humidity from sedimentary lipid D/H ratios[J]. Climate of the Past,2017,13(7): 741-757. |
91 | KONECKY B,DEE S G,NOONE D C. WaxPSM: A forward model of leaf wax hydrogen isotope ratios to bridge proxy and model estimates of past climate[J]. Journal of Geophysical Research: Biogeosciences,2019,124(7): 2 107-2 125. |
/
〈 |
|
〉 |