Formation Mechanism and Controlling Factors of Authigenic Pyrite in Mud Sediments on the Shelf of the Yellow Sea and the East China Sea
Received date: 2020-10-16
Revised date: 2020-11-20
Online published: 2021-02-09
Supported by
the National Natural Science Foundation of China “Formation mechanism of authigenic pyrite in the sediments of the East China Sea inner shelf and its response to environmental evolution”(41976053);The Laboratory for Marine Geology, Qingdao Pilot National Laboratory for Marine Science and Technology “Authigenic pyrite in East China Sea mud area constrained by the evolution of sedimentary environment since the last deglaciation”(MGQNLM-TD201901)
The formation process of marine authigenic pyrite (FeS2) is closely related to the organic mineralization process, representing an important part of the global C-S-Fe biogeochemical cycle. Since the Holocene highstand of sea level, the shelves of the Yellow Sea and the East China Sea have developed mud deposits extensively, in which a large number of authigenic pyrites are present, which provides an opportunity to study their genesis and controlling factors. In terms of spatial distribution, the distribution of pyrite is accompanied by fine-grained mud sediments, because fine-grained sediments are relatively rich in organic matter, and the relatively stable depositional environment is conducive to the progress of microbial sulfate reduction. The differences in sedimentary dynamics, organic matter sources and marine productivity in the Yellow Sea and the East China Sea lead to differences in the formation and burial of pyrite, which in turn cause differences in related indicators (such as the C/S ratio). In the vertical direction, the content of pyrite generally increases with the increase of depth, indicating that as the depth of burial increases, the dissolved oxygen in the pore water is depleted, which is beneficial to the sulfate reduction; the sulfur isotope of pyrite becomes isotopically heavy with the depth (enrichment of 34S), which may be related to the openness of the diagenetic system, or the sulfate reduction driven by anaerobic oxidation of methane. In addition, the sedimentation rate controls the content and isotopic composition of pyrite via affecting the burial of organic matter, the efficiency of communication between pore water and seawater, and the location of the sulfate- methane transition zone. The mud areas of the shelves of the Yellow Sea and the East China Sea have accumulated a large number of excellent research results in sedimentary dynamics and sedimentary processes. On this basis, combined with advanced analyzing methods such as multi-sulfur isotopes, in-situ elemental on single pyrite crystal, the potential value of pyrite could be excavated to deal with major scientific issues such as the modern ocean C-S-Fe cycle and deep-time ocean chemical evolution.
Xin Chang , Mingyu Zhang , Yu Gu , Houjie Wang , Xiting Liu . Formation Mechanism and Controlling Factors of Authigenic Pyrite in Mud Sediments on the Shelf of the Yellow Sea and the East China Sea[J]. Advances in Earth Science, 2020 , 35(12) : 1306 -1320 . DOI: 10.11867/j.issn.1001-8166.2020.105
1 | Liu Xiting,Li Anchun,Ma Zhixin,et al. Constraint of sedimentary processes on the sulfur isotope of authigenic pyrite [J]. Acta Sedimentologica Sinica,2020,38(1): 124-137. |
1 | 刘喜停,李安春,马志鑫,等. 沉积过程对自生黄铁矿硫同位素的约束[J]. 沉积学报,2020,38(1): 124-137. |
2 | Fike D A,Bradley A S,Rose C V. Rethinking the ancient sulfur cycle [J]. Annual Review of Earth and Planetary Sciences,2015,43(1): 593-622. |
3 | J?rgensen B B. Mineralization of organic matter in the sea bed—The role of sulphate reduction[J]. Nature,1982,296: 643-645. |
4 | Rickard D,Mussmann M,Steadman J A. Sedimentary sulfides [J]. Elements,2017,13: 117-122. |
5 | Liu X T,Li A C,Dong J,et al. Nonevaporative origin for gypsum in mud sediments from the East China Sea shelf [J]. Marine Chemistry,2018,205: 90-97. |
6 | J?rgensen B B,Findlay A J,Pellerin A. The biogeochemical sulfur cycle of marine sediments [J]. Frontiers in Microbiology,2019,10 (849). DOI:10.3389/fmicb.2019.00849. |
7 | Wang Kunshan,Shi Xuefa,Li Zhen,et al. Records of heavy mineral and authigenous pyrite in core DGKS9617 from the East China Sea [J]. Marine Geology & Quaternary Geology,2005,25(4): 41-45. |
7 | 王昆山,石学法,李珍,等. 东海DGKS9617岩心重矿物及自生黄铁矿记录[J]. 海洋地质与第四纪地质,2005,25(4): 41-45. |
8 | Liu J,Zhu M X,Yang G P,et al. Quick sulfide buffering in inner shelf sediments of the East China Sea impacted by eutrophication [J]. Environmental Earth Sciences,2013,71(1): 465-473. |
9 | Allen H E,Fu G M,Deng B L. Analysis of Acid‐Volatile Sulfide (AVS) and Simultaneously Extracted Metals (SEM) for the estimation of potential toxicity in aquatic sediments [J]. Environmental Toxicology & Chemistry,1993,12: 1 441-1 453. |
10 | Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews,2007,107(2): 486-513. |
11 | K?lling M,Bouimetarhan I,Bowles M W,et al. Consistent CO2 release by pyrite oxidation on continental shelves prior to glacial terminations [J]. Nature Geoscience,2019,12(11): 929-934. |
12 | Feng Dong,Gong Shanggui. Progress on the biogeochemical process of sulfur and its geological record at submarine cold seeps [J]. Bulletin of Mineralogy,Petrology and Geochemistry,2019,38(6): 1 047-1 056. |
12 | 冯东,宫尚桂. 海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展[J]. 矿物岩石地球化学通报,2019,38(6): 1 047-1 056. |
13 | Gong S G,Peng Y B,Bao H M,et al. Triple sulfur isotope relationships during sulfate-driven anaerobic oxidation of methane [J]. Earth and Planetary Science Letters,2018,504: 13-20. |
14 | Liu J R,Pellerin A,Izon G,et al. The multiple sulphur isotope fingerprint of a sub-seafloor oxidative sulphur cycle driven by iron [J]. Earth and Planetary Science Letters,2020,536: 116165. |
15 | Wang Qi,Yang Zuosheng. Authigenic pyrite in the surface sediments of the southern Huanghai Sea [J]. Oceanologia et Limnologia Sinica,1981,12(1): 25-32. |
15 | 王琦,杨作升. 黄海南部表层沉积中的自生黄铁矿[J]. 海洋与湖沼,1981,12(1): 25-32. |
16 | Wang Xianlan,Ma Kejian,Chen Jianlin,et al. Detrital minerals in the surface sediments of East China Sea shelf and their geological significance [J]. Marine Geology & Quaternary Geology,1984,4(3): 43-55. |
16 | 王先兰,马克俭,陈建林,等. 东海海底表层沉积物中的碎屑矿物及其地质意义[J]. 海洋地质与第四纪地质,1984,4(3): 43-55. |
17 | Wang Xianlan,Ma Kejian,Chen Jianlin,et al. Study on the characteristics of clastic minerals in the East China Sea [J]. Science in China (Series B),1985(5): 474-482. |
17 | 王先兰,马克俭,陈建林,等. 东海碎屑矿物特征的研究[J]. 中国科学:B辑,1985(5): 474-482. |
18 | Li Anchun,Chen Lirong,Shen Shunxi. Study on sulfur isotopes of authigenic pyrite of core H-106 from South Yellow Sea [J]. Chinese Science Bulletin,1991,36(12): 928-930. |
18 | 李安春,陈丽蓉,申顺喜. 南黄海H-106岩柱中自生黄铁矿的硫同位素研究[J]. 科学通报,1991,36(12): 928-930. |
19 | Shen Shunxi. Extend progress in study of sedimentology in the South Yellow Sea continental shelf [J]. Marine Sciences,1993(5): 24-28. |
19 | 申顺喜. 南黄海陆架沉积学研究[J]. 海洋科学,1993(5): 24-28. |
20 | Liu X T,Li A C,Fike D A,et al. Environmental evolution of the East China Sea inner shelf and its constraints on pyrite sulfur contents and isotopes since the last deglaciation [J]. Marine Geology,2020,429: 106307. |
21 | Liu X T,Fike D,Li A C,et al. Pyrite sulfur isotopes constrained by sedimentation rates: Evidence from sediments on the East China Sea inner shelf since the late Pleistocene [J]. Chemical Geology,2019,505: 66-75. |
22 | Li G X,Li P,Liu Y,et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum [J]. Earth-Science Reviews,2014,139: 390-405. |
23 | Liu J X,Mei X,Shi X F,et al. Formation and preservation of greigite (Fe3S4) in a thick sediment layer from the central South Yellow Sea [J]. Geophysical Journal International,2018,213: 135-146. |
24 | Liu J,Saito Y,Kong X H,et al. Sedimentary record of environmental evolution off the Yangtze River estuary,East China Sea,during the last ~13,000 years,with special reference to the influence of the Yellow River on the Yangtze River Delta during the last 600 years [J]. Quaternary Science Reviews,2010,29: 2 424-2 438. |
25 | Liu X T,Li A C,Dong J,et al. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt,East China Sea: Implications for the development of the mud depocenter [J]. Journal of Asian Earth Sciences,2018,151: 1-15. |
26 | Gao Shu. Holocene sedimentary systems over the Bohai,Yellow and East China Sea region: Recent progress in the study of process-product relationships [J]. Acta Sedimentologica Sinica,2013,31(5): 845-855. |
26 | 高抒. 中国东部陆架全新世沉积体系:过程—产物关系研究进展评述[J]. 沉积学报,2013,31(5): 845-855. |
27 | Li Anchun,Zhang Kaidi. Research progress of mud wedge in the inner continental shelf of the East China Sea [J]. Oceanologia et Limnologia Sinica,2020,51(4): 705-727. |
27 | 李安春,张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼,2020,51(4): 705-727. |
28 | Yang Shouye,Wei Gangjian,Shi Xuefa. Geochemical approaches of tracing sourceto-sink sediment processes and environmental changes at the East Asian continental margin [J]. Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(5): 902-910,884. |
28 | 杨守业,韦刚健,石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报,2015,34(5): 902-910,884. |
29 | Saito Y,Yang Z S. Historical change of the Huanghe (Yellow River) and its impact on the sediment budget of the East China Sea [C]//Proceedings of International Symposium on Global Fluxs of Carbon and its Related Substances in the Coastal Sea-Ocean Atmosphere System.Sapporo: Hokkaido University,1994: 7-12. |
30 | Lan Xianhong,Zhang Xunhua,Zhang Zhixun. Material sources and transportation of sediments in the southern Yellow Sea [J]. Transactions of Oceanology and Limnology,2005(4): 53-60. |
30 | 蓝先洪,张训华,张志珣. 南黄海沉积物的物质来源及运移研究[J]. 海洋湖沼通报,2005(4): 53-60. |
31 | Li Anchun,Chen Lirong,Shen Shunxi,et al. Study on the authigenic pyrite in the core H-106 from the central South Yellow Sea [J]. Studia Marina Sinica,1993,34: 79-86,236. |
31 | 李安春,陈丽蓉,申顺喜,等. 南黄海中部H-106柱状沉积物中自生黄铁矿的研究[J]. 海洋科学集刊,1993,34: 79-86,236. |
32 | Yang S Y,Wang Z B,Dou Y G,et al. A review of sedimentation since the last glacial maximum on the continental shelf of eastern China [J]. Geological Society,London,Memoirs,2014,41(1): 293-303. |
33 | Zhao B,Yao P,Bianchid T S,et al. The remineralization of sedimentary organic carbon in different sedimentary regimes of the Yellow and East China Seas [J]. Chemical Geology,2018,495: 104-117. |
34 | Yang Z S,Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea [J]. Marine Geology,2007,240: 169-176. |
35 | Wang Libo,Yang Zuosheng,Zhao Xiaohui,et al. Sedimentary characteristics of core YE-2 from the central mud area in the South Yellow Sea during last 8 400 years and its interspace coarse layers [J]. Marine Geology & Quaternary Geology,2009,29(5): 1-11. |
35 | 王利波,杨作升,赵晓辉,等. 南黄海中部泥质区YE-2孔8.4kaBP来的沉积特征[J]. 海洋地质与第四纪地质,2009,29(5): 1-11. |
36 | Zhao Yiyang,Yongahn Park,Qin Yunshan,et al. Recent development in the southern Yellow Sea sedimentology—The China-Korea Joint Investigation [J]. Marine Sciences,1998,22(1): 34-37. |
36 | 赵一阳,朴龙安,秦蕴珊,等. 南黄海沉积学研究新进展——中韩联合调查[J]. 海洋科学,1998,22(1): 34-37. |
37 | Shi Xuefa,Shen Shunxi,Yi Hi-il,et al. Modern sedimentary environment and dynamic sedimentary system of the South Yellow Sea [J]. Chinese Science Bulletin,2001,46(): 1-6. |
37 | 石学法,申顺喜,Yi Hi-il,等. 南黄海现代沉积环境及动力沉积体系[J]. 科学通报,2001,46(): 1-6. |
38 | Shen Shunxi, Chen Lirong, Gao Liang,et al. Discovery of Holocene cyclonic eddy sediment and pathway sediment in the southern Yellow Sea [J]. Oceanologia et Limnologia Sinica,1993,24(6): 563-570. |
38 | 申顺喜,陈丽蓉,高良,等. 南黄海冷涡沉积和通道沉积的发现[J]. 海洋与湖沼,1993,24(6): 563-570. |
39 | Li W J,Wang Z Y,Huang H J. Indication of size distribution of suspended particulate matter for sediment transport in the South Yellow Sea [J]. Estuarine,Coastal and Shelf Science,2020,235: 106619. |
40 | Ji X L,Liu G M,Gao S,et al. Comparison of air-sea CO2 flux and biological productivity in the South China Sea,East China Sea,and Yellow Sea: A three-dimensional physical-biogeochemical modeling study [J]. Acta Oceanologica Sinica,2017,36(12): 1-10. |
41 | Dong L X,Guan W B,Chen Q,et al. Sediment transport in the Yellow Sea and East China Sea [J]. Estuarine,Coastal and Shelf Science,2011,93: 248-258. |
42 | Milliman J D,Farnsworth K L. River Discharge to the Coastal Acean: A Global Synthesis [M]. Cambridge: Cambridge University Press,2011. |
43 | Lin S,Hsieh I J,Huang K M,et al. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments [J]. Chemical Geology,2002,182: 377-394. |
44 | Liu J P,Li A C,Xu K H,et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea [J]. Continental Shelf Research,2006,26: 2 141-2 156. |
45 | Liu J P,Xu K H,Li A C,et al. Flux and fate of Yangtze River sediment delivered to the East China Sea [J]. Geomorphology,2007,85: 208-224. |
46 | Liu Shengfa,Shi Xuefa,Liu Yanguang,et al. Sedimentation rate of mud area in the East China Sea inner continental shelf [J]. Marine Geology & Quaternary Geology,2009,29(6): 1-7. |
46 | 刘升发,石学法,刘焱光,等. 东海内陆架泥质区沉积速率[J]. 海洋地质与第四纪地质,2009,29(6): 1-7. |
47 | Zhu M X,Chen K K,Yang G P,et al. Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical Mobile Mud Belts (MMBs) [J]. Journal of Geophysical Research Biogeoences,2016,121: 2 811-2 828. |
48 | Kang X M,Liu S M,Zhang G L. Reduced inorganic sulfur in the sediments of the Yellow Sea and East China Sea [J]. Acta Oceanologica Sinica,2014,33(9): 100-108. |
49 | Chen Qing. Study on authigenic pyrites in sediments of the South Huanghai Sea [J]. Acta Geologica Sinica,1981(3): 232-246. |
49 | 陈庆. 南黄海沉积物中自生黄铁矿的研究[J]. 地质学报,1981(3): 232-246. |
50 | Lu Kai,Qin Yachao,Wang Zhongbo,et al. Heavy mineral provinces of the surface sediments in central-southern East China Sea and implications for provenance [J]. Marine Geology Frontiers,2019,35(8): 20-26. |
50 | 陆凯,秦亚超,王中波,等. 东海中南部海域表层沉积物碎屑重矿物组合分区及其物源分析[J]. 海洋地质前沿,2019,35(8): 20-26. |
51 | Zhang Kaidi,Li Anchun,Dong Jiang,et al. Detrital mineral distributions in surface sediments of the East China Sea: Implications for sediment provenance and sedimentary environment [J]. Acta Sedimentologica Sinica,2016,34(5): 902-911. |
51 | 张凯棣,李安春,董江,等. 东海表层沉积物碎屑矿物组合分布特征及其物源环境指示[J]. 沉积学报,2016,34(5): 902-911. |
52 | Shen Shunxi,Chen Lirong,Xu Wenqiang. Mineral composition and their distribution patterns in the sediments of the Huanghai Sea [J]. Oceanologia et Limnologia Sinica,1984,15(3): 240-250. |
52 | 申顺喜,陈丽蓉,徐文强. 黄海沉积物中的矿物组合及其分布规律的研究[J]. 海洋与湖沼,1984,15(3): 240-250. |
53 | Wang Kunshan,Shi Xuefa,Lin Zhenhong. Assemblages,provinces and provenances of heavy minerals on the shelf of the southern Yellow Sea and northern East China Sea [J]. Advances in Marine Science,2003,21(1): 31-40. |
53 | 王昆山,石学法,林振宏. 南黄海和东海北部陆架重矿物组合分区及来源[J]. 海洋科学进展,2003,21(1): 31-40. |
54 | Zhang Yao,Han Zongzhu,Ai Lina,et al. Characteristics and significance of heavy minerals in the surface sediments of the Holocene mud of the Yellow Sea [J]. Periodical of Ocean University of China,2018,48(11): 108-118. |
54 | 张尧,韩宗珠,艾丽娜,等. 黄海全新世泥质体表层沉积物重矿物特征及其指示意义[J]. 中国海洋大学学报,2018,48(11): 108-118. |
55 | Peng Hanchang. Discussion on the sedimentary environment of the western North Yellow Sea based on the distribution law and the related factors of authigenic pyrites [J]. Geological Review,1979,25(2): 53-57. |
55 | 彭汉昌. 从自生黄铁矿的分布规律和相关因素探讨北黄海西部海域的沉积环境[J]. 地质论评,1979,25(2): 53-57. |
56 | Lin S,Huang K M,Chen S K. Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment [J]. Deep-Sea Research Part I: Oceanographic Research Papers,2002,49: 1 837-1 852. |
57 | Kang Xuming,Gu Li,Liu Sumei. Distributions and influence factors of Acid Volatile Sulfide and pyrite in the Bohai Sea and Yellow Sea in spring [J]. Marine Environmental Science,2014,33(1): 1-7. |
57 | 康绪明,古丽,刘素美. 春季黄渤海沉积物中酸可挥发性硫与黄铁矿的分布特征及影响因素[J]. 海洋环境科学,2014,33(1): 1-7. |
58 | Pu X Q,Li F C,Zhong S J,et al. Acid volatile sulfides in sediments of South Yellow Sea [C]//2008 2nd International Conference on Bioinformatics and Biomedical Engineering. Shanghai: IEEE,2008. DOI: 10.1109/ICBBE.2008.259. |
59 | He Xingliang,Tan Liju,Duan Xiaoyong,et al. Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay [J]. Marine Geology & Quaternary Geology,2020,40(3): 51-60. |
59 | 贺行良,谭丽菊,段晓勇,等. 杭州湾沉积物中硫酸盐—甲烷转换带内的碳循环[J]. 海洋地质与第四纪地质,2020,40(3): 51-60. |
60 | Berner R A. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance [J]. American Journal of Science,1982,282: 451-473. |
61 | Kao S J,Hsu S C,Horng C S,et al. Carbon-Sulfur-Iron relationships in the rapidly accumulating marine sediments off southwestern Taiwan [J]. The Geochemical Society Special Publications,2004,9: 441-457. |
62 | Ge C,Zhang W G,Dong C Y,et al. Magnetic mineral diagenesis in the river-dominated inner shelf of the East China Sea,China [J]. Journal of Geophysical Research: Solid Earth,2015,120: 4 720-4 733. |
63 | Zhao Kuihuan. Primary study of authigenic pyrite in the sediment of the Huanghai Sea [J]. Journal of Oceanography of Huanghai & Bohai Seas,1987,5(1): 21-30. |
63 | 赵奎寰. 黄海自生黄铁矿的初步研究[J]. 黄渤海海洋,1987,5(1): 21-30. |
64 | Chu Fengyou,Chen Lirong. Morphological features of authigenic pyrite from South Yellow Sea sediments [J]. Oceanologia et Limnologia Sinica,1994,25(5): 461-467,573-574. |
64 | 初凤友,陈丽蓉. 南黄海沉积物中自生黄铁矿的形态标型研究[J]. 海洋与湖沼,1994,25(5): 461-467,573-574. |
65 | Chu Fengyou,Chen Lirong,Shen Shunxi,et al. Origin and environmental significance of authigenic pyrite from the South Yellow (Huanghai) Sea sediments [J]. Oceanologia et Limnologia Sinica,1995,26(3): 227-233. |
65 | 初凤友,陈丽蓉,申顺喜,等. 南黄海自生黄铁矿成因及其环境指示意义[J]. 海洋与湖沼,1995,26(3): 227-233. |
66 | Duan Weimin,Chen Lirong. Formation history of pyrite in the early diagenesis in the Yellow Sea and East China Sea [J]. Science in China (Series B),1993,23(5): 545-552. |
66 | 段伟民,陈丽蓉. 黄、东海早期成岩过程中黄铁矿的形成史[J]. 中国科学:B辑,1993,23(5): 545-552. |
67 | Rickard D. Sedimentary pyrite framboid size-frequency distributions: A meta-analysis [J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2019,522: 62-75. |
68 | Wilkin R T,Barnes H L,Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions [J]. Geochimica et Cosmochimica Acta,1996,60(20): 3 897-3 912. |
69 | Hu Yongliang,Wang Wei,Zhou Chuanming. Morphologic and isotopic characteristics of sedimentary pyrite: A case study from deepwater facies,Ediacaran lantian formation in South China [J]. Acta Sedimentologica Sinica,2020,38(1): 138-149. |
69 | 胡永亮,王伟,周传明. 沉积地层中的黄铁矿形态及同位素特征初探——以华南埃迪卡拉纪深水相地层为例[J]. 沉积学报,2020,38(1): 138-149. |
70 | Chang Xiaolin,Huang Yuangeng,Chen Zhongqiang,et al. The microscopic analysis of pyrite framboids and application in Paleo?oceanography [J]. Acta Sedimentologica Sinica,2020,38(1): 150-165. |
70 | 常晓琳,黄元耕,陈中强,等. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J]. 沉积学报,2020,38(1):150-165. |
71 | Yang Xueying,Gong Yiming. Pyrite framboid: Indicator of environments and life [J]. Earth Science—Journal of China University of Geosciences,2011,36(4): 643-658. |
71 | 杨雪英,龚一鸣. 莓状黄铁矿:环境与生命的示踪计[J]. 地球科学:中国地质大学学报,2011,36(4): 643-658. |
72 | Wang Q W,Morse J W. Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology [J]. Marine Chemistry,1996,52: 99-121. |
73 | Tostevin R,Turchyn A V,Farquhar J,et al. Multiple sulfur isotope constraints on the modern sulfur cycle [J]. Earth and Planetary Science Letters,2014,396: 14-21. |
74 | Canfield D E. Biogeochemistry of sulfur isotopes [J]. Reviews in Mineralogy and Geochemistry,2001,43: 607-636. |
75 | Deusner C,Holler T,Arnold G L,et al. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration [J]. Earth and Planetary Science Letters,2014,399: 61-73. |
76 | Berner R A. Sedimentary pyrite formation [J]. American Journal of Science,1970,268: 1-23. |
77 | Berner R A. Sedimentary pyrite formation: An update [J]. Geochimica et Cosmochimica Acta,1984,48(4): 605-615. |
78 | Yuan Yingru,Chen Guanqiu. Mineral assembly characteristics of the sediments and its distribution pattern in the northwestern part of South Huanghai Sea [J]. Oceanologia et Limnologia Sinica,1981,12(6): 512-521. |
78 | 袁迎如,陈冠球. 南黄海西北部沉积物中矿物组合特征及其分布规律[J]. 海洋与湖沼,1981,12(6): 512-521. |
79 | Bao Gende,Wang Yifan. Authigenic iron sulfide in sediments from Changjiang River mouth and near-shore [J]. Transactions of Oceanology and Limnology,1983(4): 51-58. |
79 | 鲍根德,汪依凡. 东海陆架沉积物中自生硫化铁的初步研究[J]. 海洋湖沼通报,1983(4): 51-58. |
80 | Zhu M X,Shi X N,Yang G P,et al. Formation and burial of pyrite and organic sulfur in mud sediments of the East China Sea inner shelf: Constraints from solid-phase sulfur speciation and stable sulfur isotope [J]. Continental Shelf Research,2013,54: 24-36. |
81 | Zhang Mingyu,Chang Xin,Hu Limin,et al. The source,transport and burial process of organic carbon in the inner shelf of the East China Sea and its deposition record [J]. Acta Sedimentologica Sinica,2020.DOI:10.14027/j.issn.1000-0550.2020.080. |
81 | 张明宇,常鑫,胡利民,等. 东海内陆架有机碳的来源、输运与埋藏过程及其沉积记录[J]. 沉积学报,2020. DOI: 10.14027/j.issn.1000-0550.2020.080. |
82 | Lin S,Huang K M,Chen S K. Organic carbon deposition and its control on iron sufide formation of the southern East China Sea continental shelf sediments [J]. Continental Shelf Research,2000,20: 619-635. |
83 | Xiong Linfang,Shi Xuefa,Deng Yu,et al. Distribution characteristics of the organic matter in the surficial sediments on the shelf of the southern Yellow Sea and the northern East China Sea [J]. Marine Science Bulletin,2013,32(3): 281-286. |
83 | 熊林芳,石学法,邓煜,等. 南黄海、东海北部陆架区表层沉积物有机质分布特征[J]. 海洋通报,2013,32(3): 281-286. |
84 | Zhu M X,Hao X C,Shi X N,et al. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf [J]. Applied Geochemistry,2012,27: 892-905. |
85 | Gomes M L,Hurtgen M T. Sulfur isotope systematics of a euxinic,low-sulfate lake: Evaluating the importance of the reservoir effect in modern and ancient oceans [J]. Geology,2013,41(6): 663-666. |
86 | Wu Xueting,Liu Lihua,Wu Nengyou,et al. Geochemistry of early diagenesis in marine sediments: Research progress [J]. Marine Geology Frontiers,2015,31(12): 17-26. |
86 | 吴雪停,刘丽华,吴能友,等. 海洋沉积物中早期成岩作用地球化学研究进展[J]. 海洋地质前沿,2015,31(12): 17-26. |
87 | Zhang Yonghua,Wu Zijun. Sedimentary organic carbon mineralization and its contribution to the marine carbon cycle in the marginal seas [J]. Advances in Earth Science,2019,34(2): 202-209. |
87 | 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展,2019,34(2): 202-209. |
88 | Wang Meng,Cai Feng,Li Qing,et al. Characteristics of authigenic pyrite and its sulfur isotopes influenced by methane seep at core A,site 79 of the middle Okinawa Trough [J]. Science China: Earth Sciences,2015,45(12): 1 819-1 828. |
88 | 王蒙,蔡峰,李清,等. 冲绳海槽79站位A孔甲烷渗漏影响下的自生黄铁矿及其硫同位素特征[J]. 中国科学:地球科学,2015,45(12): 1 819-1 828. |
89 | Lin Z Y,Sun X M,Peckmann J,et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea [J]. Chemical Geology,2016,440: 26-41. |
90 | Zhang X,Lin C M,Li Y L,et al. Sealing mechanism for cap beds of shallow-biogenic gas reservoirs in the Qiantang River incised valley,China [J]. Continental Shelf Research,2013,69: 155-167. |
91 | Chen Y F,Deng B,Zhang J. Shallow gas in the Holocene mud wedge along the inner East China Sea shelf [J]. Marine and Petroleum Geology,2020,114: 104233. |
92 | Tyson R V. Sedimentation rate,dilution,preservation and total organic carbon: Some results of a modelling study [J]. Organic Geochemistry,2001,32: 333-339. |
93 | Middelburg J J. Organic carbon,sulphur,and iron in recent semi-euxinic sediments of Kau Bay,Indonesia [J]. Geochimica et Cosmochimica Acta,1991,55(3): 815-828. |
94 | Lang X G,Tang W B,Ma H R,et al. Local environmental variation obscures the interpretation of pyrite sulfur isotope records [J]. Earth and Planetary Science Letters,2020,533: 116056. |
95 | Pasquier V,Sansjofre P,Rabineau M,et al. Pyrite sulfur isotopes reveal glacial-interglacial environmental changes [J]. Proceedings of the National Academy of Sciences,2017,114(23): 5 941-5 945. |
96 | Ma K,Sun Z L,Zhu M X,et al. Characterizing geochemistry of organic carbon,sulfur,and iron in sediments of the middle Okinawa Trough since the last glacial maximum [J]. Deep Sea Research I: Oceanographic Research Papers,2020. DOI: 10.1016/j.dsr.2020.103452. |
97 | Leavitt W D,Halevy I,Bradley A S,et al. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record [J]. Proceedings of the National Academy of Sciences,2013,110(28): 11 244-11 249. |
98 | Zheng Y,Zheng H B,Kissel C,et al. Sedimentation rate control on diagenesis,East China Sea sediments [J]. Physics of the Earth and Planetary Interiors,2011,187: 301-309. |
/
〈 |
|
〉 |