Duration of Magma Chamber: Progress and Prospect of Element Diffusion Chronometry of Minerals

  • Zuxing Chen ,
  • Zhigang Zeng ,
  • Xiaoyuan Wang ,
  • Xuebo Yin ,
  • Shuai Chen ,
  • Yuxiang Zhang
Expand
  • 1.Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266061,China
Chen Zuxing (1990-), male, Tongcheng City, Anhui Province, Assistant professor. Research areas include submarine petrology. E-mail: chenzuxing@qdio.ac.cn

Received date: 2020-07-16

  Revised date: 2020-11-10

  Online published: 2021-02-09

Supported by

the National Natural Science Foundation of China “Magmatism and its constraints on the hydrothermal material supply in the Western Pacific subduction system”(91958213);The International Partnership Program of Chinese Academy of Sciences “Metallogenic mechanism and sedimentary effect of hydrothermal activity in Okinawa Trough”(133137KYSB20170003)

Abstract

The duration of a magma chamber is of great significance for understanding the stability of the magma chamber and evaluating the active degree of active volcanoes. The element diffusion chronometry uses minerals with element concentration gradients as timers. Since the diffusion and reequilibrium process of elements in minerals conform to Fick's second law which is related to time, the time scale of the magmatic process can be defined to indicate the duration of a magma chamber. This method has been widely used in different minerals in volcanic rocks, such as Fe-Mg element diffusion in olivine and pyroxene, Mg element diffusion in plagioclase, Ti element diffusion in quartz and Li element diffusion in zircon, etc. These methods can record magma processes for only a few hours to millions of years. In the future, with the continuous development of in situ analysis and testing technology, the increase in the availability and accuracy of diffusion coefficients related to magmatism, and the improvement of the diffusion model, the development of element diffusion chronology in minerals will be greatly promoted.

Cite this article

Zuxing Chen , Zhigang Zeng , Xiaoyuan Wang , Xuebo Yin , Shuai Chen , Yuxiang Zhang . Duration of Magma Chamber: Progress and Prospect of Element Diffusion Chronometry of Minerals[J]. Advances in Earth Science, 2020 , 35(12) : 1232 -1242 . DOI: 10.11867/j.issn.1001-8166.2020.098

References

1 Cooper K. Time scales and temperatures of crystal storage in magma reservoirs: Implications for magma reservoir dynamics [J]. Philosophical Transactions Mathematical Physical and Engineering Sciences, 2019, 377(2 139): 20180009.
2 Costa F,Shea T,Ubide T. Diffusion chronometry and the timescales of magmatic processes [J]. Nature Reviews Earth and Environment, 2020, 1: 201-214.
3 Mangan M. Crystal size distribution systematics and the determination of magma storage times: The 1959 eruption of Kilauea volcano,Hawaii [J]. Journal of Volcanology and Geothermal Research, 1990, 44(3): 295-302.
4 Claiborne L,Miller C,Flanagan D,et al. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens [J]. Geology, 2010, 38(11): 1 011-1 014.
5 Zou Haibo,Vazquez J,Fan Qicheng. Timescales of magmatic processes in post-collisional potassic lavas,northwestern Tibet [J]. Lithos, 2020, 358/359: 105418.
6 Klemetti E,Deering C,Cooper K,et al. Magmatic perturbations in the Okataina Volcanic Complex,New Zealand at thousand-year timescales recorded in single zircon crystals [J]. Earth and Planetary Science Letters, 2011, 305(1): 185-194.
7 Frey H M,Manon M R,Brehm S K,et al. Episodic crystallization in young explosive eruptions in Dominica,Lesser Antilles,revealed by U-Th dating of zircons [J]. Geology,2018,46 (10): 887-890.
8 Rubin A,Cooper K,Till C,et al. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals [J]. Science, 2017, 356(6 343): 1 154.
9 Schmitt A. Uranium series accessory crystal dating of magmatic processes [J]. Annual Review of Earth and Planetary Sciences,2011, 39(39): 321-349.
10 Stelten M,Cooper K. Constraints on the nature of the subvolcanic reservoir at South Sister volcano,Oregon from U-series dating combined with sub-crystal trace-element analysis of plagioclase and zircon [J]. Earth and Planetary Science Letters,2012,s313/314(2): 1-11.
11 Druitt T,Costa F,Deloule E,et al. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano [J]. Nature,2012,482(7 383): 77.
12 Ruprecht P,Plank T. Feeding andesitic eruptions with a high-speed connection from the mantle [J]. Nature,2013,500(7 460): 68-72.
13 Petrone C,Bugatti G,Braschi E,et al. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics[J]. Nature Communications, 2016, 7: 12946.
14 Chakraborty S. Diffusion in solid silicates: A tool to track timescales of processes comes of age [J]. Annual Review of Earth and Planetary Sciences,2008,36(1): 153-190.
15 Kohn M,Penniston-Dorland S. Diffusion: Obstacles and opportunities in petrochronology [J]. Reviews in Mineralogy and Geochemistry, 2017, 83(1): 103-152.
16 Costa F,Dohmen R,Chakraborty S. Time scales of magmatic processes from modeling the zoning patterns of crystals [J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 545-594.
17 Costa F,Chakraborty S,Dohmen R. Diffusion coupling between trace and major elements and a model for calculation of magma residence times using plagioclase[J]. Geochimica et Cosmochimica Acta, 2003, 67(12): 2 189-2 200.
18 Hartley M,Morgan D,Maclennan J,et al. Tracking timescales of short-term precursors to large basaltic fissure eruptions through Fe-Mg diffusion in olivine [J]. Earth and Planetary Science Letters, 2016, 439: 58-70.
19 Saunders K,Blundy J,Dohmen R,et al. Linking petrology and seismology at an active volcano [J]. Science, 2012, 336(6 084): 1 023-1 027.
20 Brenna M,Cronin S,Smith I E M, et al. Olivine xenocryst diffusion reveals rapid monogenetic basaltic magma ascent following complex storage at Pupuke Maar,Auckland Volcanic Field,New Zealand [J]. Earth and Planetary Science Letters,2018,499: 13-22.
21 Allan S,Morgan D,Wilson C,et al. From mush to eruption in centuries: Assembly of the super-sized Oruanui magma body [J]. Contributions to Mineralogy and Petrology,2013,166(1): 143-164.
22 Morgan D,Blake S,Rogers N,et al. Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944 [J]. Earth and Planetary Science Letters, 2004, 222(3/4): 933-946.
23 Fabbro G,Druitt T,Costa F. Storage and eruption of silicic magma across the transition from dominantly effusive to caldera-forming states at an Arc Volcano (Santorini,Greece) [J]. Journal of Petrology, 2017, 58(12): 2 429-2 464.
24 Jollands M,Elias Bloch,Othmar Müntener. New Ti-in-quartz diffusivities reconcile natural Ti zoning with time scales and temperatures of upper crustal magma reservoirs [J]. Geology,2020, 48: 654-657.
25 Wark D,Hildreth W,Spear F S,et al. Pre-eruption recharge of the Bishop magma system [J]. Geology, 2007, 35(3): 235.
26 de León A C,Schmitt A K. Reconciling Li and O diffusion in zircon with protracted magmatic crystal residence [J]. Contributions to Mineralogy and Petrology,2019,174(4). DOI:10.1007/s00410-019-1564-8.
27 Fabbro G. The Timescales of Magmatic Processes Prior to a Caldera-Forming Eruption [D]. Clermont-Ferrand: Université Blaise Pascal, 2014.
28 Mueller T,Watson E,Harrison T. Applications of diffusion data to high-temperature Earth systems [J]. Reviews in Mineralogy and Geochemistry,2010, 72(1): 997-1 038.
29 Putirka K D. Thermometers and barometers for volcanic systems [J]. Reviews in Mineralogy and Geochemistry,2008,69(1): 61-120.
30 Chen Zuxing,Zeng Zhigang,Wang Xiaoyuan,et al. Element and Sr isotope zoning in plagioclase in the dacites from the southwestern Okinawa Trough: Insights into magma mixing processes and time scales [J]. Lithos, 2020, 376/377: 105776.
31 Brady J,Cherniak D. Diffusion in minerals: An overview of published experimental diffusion data [J]. Reviews in Mineralogy and Geochemistry,2010,72(1): 899-920.
32 Moussallam Y,Rose-Koga E,Koga K,et al. Fast ascent rate during the 2017-2018 Plinian eruption of Ambae (Aoba) volcano: A petrological investigation [J]. Contributions to Mineralogy and Petrology,2019,174(11): 90.
33 Gualda G,Pamukcu A,Ghiorso M,et al. Timescales of quartz crystallization and the longevity of the Bishop giant magma body[J]. PLoS One, 2012, 7(5): e37492.
34 Chamberlain K J, Morgan D J. Timescales of mixing and mobilisation in the Bishop Tuff magma body: Perspectives from diffusion chronometry[J]. Contributions to Mineralogy and Petrology,2014,168: 1 034.
35 Trail D,Cherniak D,Watson E,et al. Li zoning in zircon as a potential geospeedometer and peak temperature indicator[J]. Contributions to Mineralogy and Petrology,2016,171(3): 25.
36 Costa F,Chakraborty S. Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine [J]. Earth and Planetary Science Letters,2004,227(3/4): 517-530.
37 Prior D J,Boyle A P,Brenker F,et al. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks [J]. American Mineralogist,1999,84: 1 741-1 759.
38 Cherniak D,Watson E,Wark D. Ti diffusion in quartz [J]. Chemical Geology, 2007, 236(1/2): 65-74.
39 Wark D,Watson E. TitaniQ: A titanium-in-quartz geothermometer [J]. Contributions to Mineralogy and Petrology,2006,152(6): 743-754.
40 Huang Ruifang,Audétat A. The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration [J]. Geochimica et Cosmochimica Acta, 2012, 84: 75-89.
41 Wiebe R,Wark D,Hawkins D. Insights from quartz cathodoluminescence zoning into crystallization of the Vinalhaven granite,coastal Maine [J]. Contributions to Mineralogy and Petrology, 2007, 154(4): 439-453.
42 Cherniak D J, Watson B E. Diffusion in zircon [J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 113-143.
43 Cherniak D,Watson E. Li diffusion in zircon [J]. Contributions to Mineralogy and Petrology,2010,160(3): 383-390.
44 Tang M,Rudnick R L,McDonough W F,et al. Multi-mode Li diffusion in natural zircons: Evidence for diffusion in the presence of step-function concentration boundaries [J]. Earth and Planetary Science Letters,2017,474: 110-119.
45 Wilson C J N,Morgan D J,Charlier B L A,et al. Comment on "Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals" [J]. Science,2017,358(6 370): eaap8429.
46 Cherniak D,Dimanov A. Diffusion in pyroxene,mica and amphibole [J]. Reviews in Mineralogy and Geochemistry,2010,72(1): 641-690.
47 Tomiya A, Takhashi E. Evolution of the magma chamber beneath Usu Volcano since 1663: A natural laboratory for observing changing phenocryst compositions and textures [J]. Journal of Petrology,2005,46(12): 2 395-2 426.
48 Ganguly J,Tazzoli V. Fe2+-Mg interdiffusion in orthopyroxene: Retrieval from the data on intracrystalline exchange reaction [J]. American Mineralogist,1994,79(9): 930-937.
49 Klügel A. Prolonged reactions between harzburgite xenoliths and silica-undersaturated melt: Implications for dissolution and Fe-Mg interdiffusion rates of orthopyroxene [J]. Contributions to Mineralogy and Petrology,2001,141(1): 1-14.
50 Dohmen R,Ter heege J,Becker H,et al. Fe-Mg interdiffusion in orthopyroxene [J]. American Mineralogist,2016,101(10): 2 210-2 221.
51 Dohmen R,Becker H,Chakraborty S. Fe-Mg diffusion in olivine I: Experimental determination between 700 and 1,200°C as a function of composition,crystal orientation and oxygen fugacity[J]. Physics and Chemistry of Minerals, 2007, 34(6): 389-407.
52 Chakraborty S. Diffusion coefficients in olivine,wadsleyite and ringwoodite [J]. Reviews in Mineralogy and Geochemistry,2010,72(1): 603-639.
53 Coogan L,Hain A,Stahl S,et al. Experimental determination of the diffusion coefficient for calcium in olivine between 900 °C and 1 500 °C [J]. Geochimica et Cosmochimica Acta,2005,69(14): 3 683-3 694.
54 Lynn K,Shea T,Garcia M O,et al. Lithium diffusion in olivine records magmatic priming of explosive basaltic eruptions [J]. Earth and Planetary Science Letters, 2018, 500: 127-135.
55 Cherniak D,Liang Y. Titanium diffusion in olivine [J]. Geochimica et Cosmochimica Acta,2014, 147: 43-57.
56 Sundermeyer C,Di Muro A,Gordeychik B,et al. Timescales of magmatic processes during the eruptive cycle 2014-2015 at Piton de la Fournaise,La Réunion,obtained from Mg-Fe diffusion modelling in olivine [J]. Contributions to Mineralogy and Petrology,2020,175: 1.
57 Renjith M. Micro-textures in plagioclase from 1994-1995 eruption,Barren Island Volcano: Evidence of dynamic magma plumbing system in the Andaman subduction zone [J]. Geoscience Frontiers,2014,5(1): 113-126.
58 Berlo K,Blundy J,Turner S,et al. Textural and chemical variation in plagioclase phenocrysts from the 1980 eruptions of Mount St. Helens,USA [J]. Contributions to Mineralogy and Petrology,2007,154(3): 291-308.
59 Crabtree S,Lange R. Complex phenocryst textures and zoning patterns in andesites and dacites: Evidence of degassing-induced rapid crystallization[J]. Journal of Petrology, 2011, 52(1): 3-38.
60 Lai Zhiqing,Zhao Guangtao,Han Zongzhu,et al. Back-arc magma processes in the Okinawa Trough: New insights from textural and compositional variations of plagioclase in basalts [J]. Geological Journal, 2016, 51: 346-356.
61 Grove T,Baker M,Kinzler R. Coupled caal-nasi diffusion in plagioclase feldspar: Experiments and applications to cooling rate speedometry[J]. Geochimica et Cosmochimica Acta,1984, 48(10): 2 113-2 121.
62 Tepley F,Davidson J,Tilling R,et al. Magma mixing,recharge and eruption histories recorded in plagioclase phenocrysts from El Chichón Volcano,Mexico [J]. Journal of Petrology,2000,41(9): 1 397-1 411.
63 Tepley F,Davidson J,Clynne M. Magmatic interactions as recorded in plagioclase phenocrysts of Chaos Crags,Lassen Volcanic Center,California [J]. Journal of Petrology,1999,40(5): 787-806.
64 Ginibre C,Worner G,Kronz A. Crystal zoning as an archive for magma evolution [J]. Elements, 2007, 3(4): 261-266.
65 Bezard R,Turner S,Davidson J,et al. Origin and evolution of silicic magmas in Oceanic Arcs: An in situ study from St Lucia,Lesser Antilles [J]. Journal of Petrology,2017,58(7): 1 279-1 318.
66 Izbekov P,Eichelberger J,Patino L,et al. Calcic cores of plagioclase phenocrysts in andesite from Karymsky volcano: Evidence for rapid introduction by basaltic replenishment [J]. Geology, 2002, 30(9): 799.
67 Chen Zuxing,Zeng Zhigang,Wang Xiaoyuan,et al. Mineral chemistry indicates the petrogenesis of rhyolite from the southwestern Okinawa Trough[J]. Journal of Ocean University of China, 2017, 16(6): 1 097-1 108.
68 Oeser M,Dohmen R,Horn I,et al. Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines[J]. Geochimica et Cosmochimica Acta, 2015, 154: 130-150.
Outlines

/