Application of Dynamic Terrain Data Through the Whole Process of Model Test Using Dynamic Photogrammetry

  • Yong Wei ,
  • Qiang Xu ,
  • Zhuo Wang ,
  • Huajin Li ,
  • Songlin Li
Expand
  • State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,China
Wei Yong (1985-), male, Linshui County, Sichuan Province, Ph.D student. Research areas include rock and soil stability and engineering effect. E-mail:ceweiyong@hotmail.com

Received date: 2020-06-04

  Revised date: 2020-09-08

  Online published: 2020-11-30

Supported by

the National Natural Science Foundation of China “Prevention and control of geo-disasters for coordination mechanism between human race and geo-environment of mega constructions in loess area”(41790445);“Formation mechanisms, monitoring and early warning and quantitative risk assessment of diffuse failure landslides”(41630640)

Abstract

Model test is widely accepted and used in the field of civil engineering, mining engineering and earth sciences, etc. At present, the static terrain data are measured before and after each experiment by terrestrial laser scanning, however it is necessary to explore new technology to obtain dynamic terrain data in the course of the experiment. By taking the specified experimental tests of debris avalanche as an example, the method of 4D reconstruction based on dynamic photogrammetry was described in detail. The dynamic terrain data of the model test were obtained after the data had been processed, and then the propagation and deposit features of debris avalanche were analyzed in detail. The results show that the dynamic terrain data of the model test can be obtained accurately with the method, and the interpretation of the propagation and deposit should be relatively easy by analyzing the data of model test in detail. This is not only the new technology applied in the document of the dynamic terrain of the model test, but also causes a great change for the experimental analysis, and it deserves to be applied widely.

Cite this article

Yong Wei , Qiang Xu , Zhuo Wang , Huajin Li , Songlin Li . Application of Dynamic Terrain Data Through the Whole Process of Model Test Using Dynamic Photogrammetry[J]. Advances in Earth Science, 2020 , 35(10) : 1087 -1098 . DOI: 10.11867/j.issn.1001-8166.2020.083

References

1 Rui Rui, He Qing, Chen Cheng, et al. Model tests on Earth pressure and settlement of shield tunnel crossing adjacent underground retaining structures[J]. Chinese Journal of Geotechnical Engineering, 2020,42(5): 864-872.
1 芮瑞,何清,陈成,等.盾构穿越临近地下挡土结构土压力及沉降影响模型试验[J].岩土工程学报,2020,42(5):864-872.
2 Sun Qiang. Mechanism and Method of Key Aquiclude Strata Reconstruction by Backfill Mining Technology[D]. Xuzhou: China University of Mining and Technology,2019.
2 孙强. 充填开采再造隔水关键层机理及方法研究[D].徐州:中国矿业大学,2019.
3 Feng Jiarui, Gao Zhiyong, Cui Jinggang, et al. Reservoir porosity evolution characteristics and evaluation of the jurassic deep reservoir from Dibei in Kuqa depression: Insight from diagenesis modeling experiments under the influence of burial mode[J]. Advances in Earth Science, 2018, 33(3): 305-320.
3 冯佳睿,高志勇,崔京钢,等.库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J].地球科学进展,2018,33(3):305-320.
4 Zhao Hongze, Du Hairui, Su Haiyun, et al. Basal contact friction experiment of composite slope containing soft rock and multiple seam in open pit[J]. Journal of China Coal Society,2018,43(10):2 724-2 731.
4 赵红泽,杜海瑞,苏海云,等. 露天矿多煤层软岩复合边坡底摩擦实验研究[J].煤炭学报,2018,43(10):2 724-2 731.
5 Kaitna R, Palucis M C, Yohannes B, et al. Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(2): 415-441.
6 Caballero L, Sarocchi D, Borselli L, et al. Particle interaction inside debris flows: Evidence through experimental data and quantitative clast shape analysis[J]. Journal of Volcanology and Geothermal Research, 2012, 231/232: 12-23.
7 Liu Run, Li Chengfeng, Lian Jijian, et al. Centrifugal shaking table tests on dynamic response of bucket foundation-sandy soil [J]. Chinese Journal of Geotechnical Engineering,2020,42(5): 817-826.
7 刘润,李成凤,练继建,等.筒型基础—砂土地基动力响应的离心振动台试验研究[J].岩土工程学报,2020,42(5):817-826.
8 Zhou G G D, Li S, Song D, et al. Depositional mechanisms and morphology of debris flow: Physical modelling[J]. Landslides, 2019, 16(2): 315-332.
9 Cao Congwu, Xu Qiang, Peng Dalei, et al. Research on the failure mechanism of the Heifangtai loess landslides based on the physical simulation experiments[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 72-77.
9 曹从伍,许强,彭大雷,等. 基于物理模拟实验的黑方台黄土滑坡破坏机理研究[J]. 水文地质工程地质, 2016, 43(4): 72-77.
10 De Haas T, Braat L, Leuven J R, et al. Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(9): 1 949-1 972.
11 Deng Hui, Li Guoying, Yang Haifeng, et al. Improvement and application of riedel shear systerm[J]. Advances in Earth Science, 2019, 34(8): 868-878.
11 邓辉,李果营,杨海风,等. 走滑应变椭圆模型的改进及应用举例[J].地球科学进展, 2019, 34(8): 868-878.
12 Dooley T P, Schreurs G. Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results[J]. Tectonophysics,2012,574/575(11):1-71.
13 Wang Y F, Xu Q, Cheng Q G, et al. Spreading and deposit characteristics of a rapid dry granular avalanche across 3D Topography: Experimental study[J]. Rock Mechanics & Rock Engineering, 2016, 49(11):4 349-4 370.
14 Chen Liwei. Study on the Propagation Mechanism of Ground Fissures[D]. Xi'an: Chang'an University,2007.
14 陈立伟. 地裂缝扩展机理研究[D].西安:长安大学,2007.
15 Zhang Li, Wang Jinman, Liu Tao. Landscape reconstruction and recreation of damaged land in opencast coal mine: A review[J]. Advances in Earth Science,2016,31(12):1 235-1 246.
15 张莉,王金满,刘涛.露天煤矿区受损土地景观重塑与再造的研究进展[J].地球科学进展,2016,31(12):1 235-1 246.
16 Wang Yufeng. Experiments on the Fluidization of Rock Avalanches Under the Effect of Entrapped Air[D]. Chengdu: Southwest Jiaotong University, 2014.
16 王玉峰. 高速远程滑坡裹气流态化机理实验研究[D]. 成都:西南交通大学, 2014.
17 Iverson R M, Logan M, Denlinger R P. Granular avalanches across irregular three‐dimensional terrain: 2. Experimental tests[J]. Journal of Geophysical Research: Earth Surface, 2004, 109(F1). DOI:10.1029/2003JF000084.
18 Caviedes-Voullième D, Juez C, Murillo J, et al. 2D dry granular free-surface flow over complex topography with obstacles. Part I: Experimental study using a consumer-grade RGB-D sensor[J]. Computers & Geosciences, 2014, 73: 177-197.
19 Peng Dalei, Xu Qiang, Dong Xiujun, et al. Application of unmanned aerial vehicles low-altitude photogrammetry in investigation and evaluation of loess landslide[J]. Advances in Earth Science, 2017, 32(3): 319-330.
19 彭大雷,许强,董秀军,等. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展, 2017, 32(3): 319-330.
20 Sun Peng. Research on Large Scale Dynamic Photogrammetry[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
20 孙鹏. 大尺寸动态摄影测量关键技术研究[D]. 北京:北京邮电大学, 2019.
21 Dong Xiujun. Research of Comprehensive Application of Three-dimensional Image Technology in Geologic Engineering[D]. Chengdu: Chengdu University of Technology, 2015.
21 董秀军. 三维空间影像技术在地质工程中的综合应用研究[D]. 成都:成都理工大学, 2015.
22 Eltner A, Kaiser A, Abellan A, et al. Time lapse structure-from-motion photogrammetry for continuous geomorphic monitoring[J]. Earth Surface Processes and Landforms, 2017, 42(14): 2 240-2 253.
23 Li Shaoxu. Research on High Dynamic Range Fringe Projection Three-dimensional Measurement[D]. Nanjing: Southeast University, 2018.
23 李韶旭. 高动态范围光栅投影三维测量技术研究[D]. 南京:东南大学, 2018.
24 Thielicke W, Stamhuis E J. PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB[J]. Journal of Open Research Software,2014, 2(1):1-10.
Outlines

/