Review in Detrital Zircon U-Pb Geochronology: Data Acquisition, Analysis and Comparison
Received date: 2020-01-30
Revised date: 2020-03-03
Online published: 2020-05-08
Supported by
the National Natural Science Foundation of China “Tracing the southward-flowing paleo-Jinsha River—Sedimentary records from the Paleogene basins along the southeastern margin of Tibetan Platea”(41572154)
The U-Pb chronology of detritus zircon is an important method to explore sediment provenance, which is widely used in sedimentology, geotectonics, geomorphology and other fields. This paper reviewed the recent progress of the U-Pb chronology of detrital zircon from three aspects: data acquisition, analysis and comparison. In terms of data acquisition, the sample preparation method, isotope age data selection and test quantity were expounded from the basic principle; In terms of data analysis, the data visualization methods of Probability Density Plot (PDP), Kernel Density Estimate (KDE) and Cumulative Age Distribution (CAD) were compared; In terms of data comparison, the basic algorithm and application advantages of quantitative comparison were analyzed with examples, including (dis)similarity measures based on non-parametric hypothesis tests (K-S test), (dis)similarity measures based on age spectrum comparison (Cross-correlation coefficients) and (dis)similarity measures based on Multi-Dimensional Scali (MDS). Finally, three commonly used software tools were introduced. Suggestions were given in terms of data acquisition, analysis and comparison for future research.
Ling Zhang , Ping Wang , Xiyun Chen , Yong Yin . Review in Detrital Zircon U-Pb Geochronology: Data Acquisition, Analysis and Comparison[J]. Advances in Earth Science, 2020 , 35(4) : 414 -430 . DOI: 10.11867/j.issn.1001-8166.2020.030
1 | Blatt H, Jones R L. Proportions of exposed igneous, metamorphic, and sedimentary rocks[J]. Geological Society of America Bulletin, 1975, 86(8):1 085-1 088. |
2 | Zhang Shuo, Jian Xing, Zhang Wei. Sedimentary provenance analysis using detrital apatite: A review[J]. Advances in Earth Science, 2018,33(11): 1 142-1 153. |
2 | 张硕,简星,张巍.碎屑磷灰石对沉积物源判别的指示[J].地球科学进展,2018,33(11):1 142-1 153. |
3 | Jian Xing,Guan Ping,Zhang Wei. Detrital rutile: A sediment provenance indicator[J]. Advances in Earth Science,2012,27(8): 828-846. |
3 | 简星,关平,张巍.碎屑金红石:沉积物源的一种指针[J].地球科学进展,2012,27(8):828-846. |
4 | Garzanti E, Padoan M, Setti M, et al. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds[J]. Geochemistry Geophysics Geosystems, 2013, 14(2):292-316. |
5 | Nie Junsheng, Stevens T, Rittner M, et al. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment[J]. Nature Communications, 2015, 6:8 511. |
6 | Copeland P, Harrison T M. Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital K-feldspar and muscovite, Bengal fan[J]. Geology, 1990, 18(4):354. |
7 | Vermeesch P. Quantitative geomorphology of the White Mountains (California) using detrital apatite fission track thermochronology[J]. Journal of Geophysical Research Earth Surface, 2007, 112(F3). DOI: 10.1029/2006JF000671. |
8 | Stock G M, Ehlers T A, Farley K A. Where does sediment come from?Quantifying catchment erosion with detrital apatite (U-Th)/He thermochronometry[J]. Geology, 2006, 34(9):725. |
9 | Rahl J M, Reiners P W, Campbell I H, et al. Combined single-grain (U-Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah[J]. Geology, 2003, 31(9): 761-764. |
10 | Codilean A T, Bishop P, Stuart F M, et al. Single-grain cosmogenic 21Ne concentrations in fluvial sediments reveal spatially variable erosion rates[J]. Geology, 2008, 36(2):159. |
11 | Pell S D, Williams I S, Chivas A R. The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands[J]. Sedimentary Geology, 1997, 109(3):233-260. |
12 | Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2013, 78:355-368. |
13 | Vermeesch P, Garzanti E. Making geological sense of ‘Big Data’ in sedimentary provenance analysis[J]. Chemical Geology, 2015, 409:20-27. |
14 | Fedo C M. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):277-303. |
15 | Gehrels G E, Valencia V A, Ruiz J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3). DOI:10.1029/2007GC001805. |
16 | Shaulis B, Lapen T J, Toms A. Signal linearity of an extended range pulse counting detector: Applications to accurate and precise U-Pb dating of zircon by laser ablation quadrupole ICP-MS[J]. Geochemistry Geophysics Geosystems, 2010, 11(11).DOI:10.1029/2010GC003198. |
17 | Gehrels G. Detrital zircon U-Pb geochronology: Current methods and new opportunities[M]//Tectonics of Sedimentary Basins: Recent Advances. Blackwell Publishing Ltd., 2011: 45-62. |
17 | DOI:10.1002/9781444347166. |
18 | Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312: 190-194. |
19 | Spurlin, Matthew S. Special Paper 347: Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada and Northern California Volume 347 [M]. California: Geological Society of America, 2000:89-98. |
20 | Schoene B. 4.10-U-Th-Pb Geochronology[J]. Treatise on Geochemistry, 2014, 4: 341-378. |
21 | Malusà M G, Carter A, Limoncelli M, et al. Bias in detrital zircon geochronology and thermochronometry[J]. Chemical Geology, 2013, 359: 90-107. |
22 | Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62. |
23 | Wetherill G W. Discordant uranium-lead ages, I[J]. Eos, Transactions American Geophysical Union, 1956, 37(3): 320-326. |
24 | Nemchin A A, Cawood P A. Discordance of the U-Pb system in detrital zircons: Implication for provenance studies of sedimentary rocks[J]. Sedimentary Geology, 2005, 182(1/4): 143-162. |
25 | Hiess J, Condon D J, McLean N, et al. 238U/235U systematics in terrestrial uranium-bearing minerals[J]. Science, 2012, 335(6 076): 1 610-1 614. |
26 | Tera F, Wasserburg G J. U-Th-Pb systematics in lunar highland samples from the Luna 20 and Apollo 16 missions[J]. Earth and Planetary Science Letters, 1972, 17(1): 36-51. |
27 | Gehrels G E, Valencia V A, Ruiz J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03017. DOI:10.1029/2007GC001805. |
28 | Spencer C J, Kirkland C L, Taylor R J M. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology[J]. Geoscience Frontiers, 2016, 7(4): 581-589. |
29 | Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 441-451. |
30 | Dodson M H, Compston W, Williams I S, et al. A search for ancient detrital zircons in Zimbabwean sediments[J]. Journal of the Geological Society, 1988, 145(6): 977-983. |
31 | Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125. |
32 | Cottle J M, Horstwood M S A, Parrish R R. A new approach to single shot laser ablation analysis and its application to in situ Pb/U geochronology[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(10): 1 355-1 363. |
33 | Matthews W A, Guest B. A practical approach for collecting large-n detrital zircon U-Pb data sets by Quadrupole LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2017, 41(2): 161-180. |
34 | Pullen A, Ibá?ez-Mejía M, Gehrels G E, et al. What happens when n=1000?Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 971-980. |
35 | Daniels B G, Auchter N C, Hubbard S M, et al. Timing of deep-water slope evolution constrained by large-n detrital and volcanic ash zircon geochronology, Cretaceous Magallanes Basin, Chile[J]. GSA Bulletin, 2018, 130(3/4): 438-454. |
36 | Smith D M, Bartlet J C. Calculation of the areas of isolated or overlapping normal probability curves[J]. Nature, 1961, 191(4 789):688-689. |
37 | Behboodian J. On a mixture of normal distributions[J]. Biometrika, 1970, 57(1):215-217. |
38 | Everitt B S, Hand D J. Finite mixture distribution[M]//Monographs on Statistics and Applied Probability. Dordrecht:Springer, 1981. |
39 | Titterington D M, Smith A F M, Makov U E. Statistical Analysis of Finite Mixture Distributions[M]. New York: Wiley, 1985. |
40 | Lo Y. Testing the number of components in a normal mixture[J]. Biometrika, 2001, 88(3):767-778. |
41 | Scott F R, Richard S, Getz W M, et al. Contingent kernel density estimation[J]. PLoS ONE, 2012, 7(2):e30549. |
42 | L?uter H, Silverman B W. Density Estimation for Statistics and Data Analysis[M]. New York: Chapman & Hall, 1986 |
43 | Scott D W. Multivariate Density Estimation: Theory, Practice, and Visualization[M]. Berlin: John Wiley & Sons, 2015. |
44 | Yang Shouye, Zhang Feng, Wang Zhongbo. Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China[J]. Chemical Geology, 2012, 296: 26-38. |
45 | Delaigle A, Meister A. Density estimation with heteroscedastic error[J]. Bernoulli, 2008, 14(2):562-579. |
46 | Staudenmayer J, Buonaccorsi R J P. Density estimation in the presence of heteroscedastic measurement error[J]. Journal of the American Statistical Association, 2008, 103(482):726-736. |
47 | Carroll R J, Delaigle A, Hall P. Nonparametric prediction in measurement error models[J]. Journal of the American Statistical Association, 2009, 104(487):993-1 003. |
48 | Botev Z I, Grotowski J F, Kroese D P. Kernel density estimation via diffusion[J]. The Annals of Statistics, 2010, 38(5): 2 916-2 957. |
49 | Mcintyre J, Stefanski L A. Density estimation with replicate heteroscedastic measurements[J]. Annals of the Institute of Statistical Mathematics, 2011, 63(1): 81-99. |
50 | Shimazaki H, Shinomoto S. Kernel bandwidth optimization in spike rate estimation[J]. Journal of Computational Neuroscience, 2009, 29(1/2):171-182. |
51 | Stephens M A. Use of the Kolmogorov-Smirnov, Cramér-Von mises and related statistics without extensive tables[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1970,32(1):115-122. |
52 | Saylor J E, Sundell K E. Quantifying comparison of large detrital geochronology data sets[J]. Geosphere, 2016, 12(1): 203-220. |
53 | Saylor J E, Stockli D F, Horton B K, et al. Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera, Colombia[J]. Geological Society of America Bulletin, 2012, 124(5/6):762-779. |
54 | Saylor J E, Knowles J N, Horton B K, et al. Mixing of source populations recorded in detrital zircon U-Pb age spectra of modern river sands[J]. The Journal of Geology, 2013, 121(1):17-33. |
55 | Wilk M B, Gnanadesikan R. Probability plotting methods for the analysis for the analysis of data[J]. Biometrika, 1968, 55(1):1-17. |
56 | Satkoski A M, Wilkinson B H, Hietpas J, et al. Likeness among detrital zircon populations—An approach to the comparison of age frequency data in time and space[J]. Geological Society of America Bulletin, 2013, 125(11/12):1 783-1 799. |
57 | Vermeesch P.Multi-sample comparison of detrital age distributions[J]. Chemical Geology, 2013, 341(2):140-146. |
58 | Wissink G K, Wilkinson B H, Hoke G D. Pairwise sample comparisons and multidimensional scaling of detrital zircon ages with examples from the North American platform, basin, and passive margin settings[J]. Lithosphere, 2018, 10(3): 478-491. |
59 | Torgerson W S. Multidimensional scaling: I. Theory and method[J]. Psychometrika, 1952, 17(4):401-419. |
60 | Carroll J D, Arabie P, Ho S M. Multidimensional scaling [M]//Applied Multivariate Statistical Analysis. Heidelberg:Springer Berlin, 2007. |
61 | Kruskal J B. Nonmetric multidimensional scaling: A numerical method[J]. Psychometrika, 1964, 29(2):115-129. |
62 | Vermeesch P. Dissimilarity measures in detrital geochronology[J]. Earth-Science Reviews, 2018, 178: 310-321. |
63 | He Mengying, Zheng Hongbo, Bookhagen B, et al. Controls on erosion intensity in the Yangtze River basin tracked by U-Pb detrital zircon dating[J]. Earth-Science Reviews, 2014, 136: 121-140. |
64 | Jia Juntao, Zheng Hongbo, Huang Xiangtong, et al. Detrital zircon U-Pb ages of late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River[J]. Chinese Science Bulletin, 2010, 55(4/5): 350-358. |
64 | 贾军涛, 郑洪波, 黄湘通,等. 长江三角洲晚新生代沉积物碎屑锆石U-Pb年龄及其对长江贯通的指示[J]. 科学通报, 2010, 55(4/5): 350-358. |
65 | Tian Ziqiang, Wang Yongsheng, Hu Zhaoqi, et al. LA-ICP MS zircon U-Pb dating of metasedimentary rocks in Dabie orogenic belt and its tectonic implications[J]. Advances in Earth Science,2018,33(9):945-957. |
65 | 田自强, 王勇生, 胡召齐,等. 大别造山带内部变沉积岩锆石 LA-ICP MS U-Pb定年及其大地构造意义[J]. 地球科学进展, 2018, 33(9): 945-957. |
66 | Zhang Wenhui, Wang Cuizhi, Li Xiaomin, et al. Zircon SIMS U-Pb age,Hf and O isotopes of mafic dikes,southwest Fujian Province[J]. Advances in Earth Science,2016,31(3):320-334. |
66 | 张文慧, 王翠芝, 李晓敏,等.闽西南基性岩脉中捕获锆石SIMS U-Pb年龄及Hf,O同位素特征[J]. 地球科学进展, 2016, 31(3): 320-334. |
67 | Wissink G K, Hoke G D. Eastern margin of Tibet supplies most sediment to the Yangtze River[J]. Lithosphere, 2016, 8(6): 601-614. |
68 | Roe G. On the interpretation of Chinese loess as a paleoclimate indicator[J]. Quaternary Research, 2009, 71(2): 150-161. |
69 | Wang Xunming, Dong Zhibao, Zhang Jiawu, et al. Modern dust storms in China: An overview[J]. Journal of Arid Environments, 2004, 58(4): 559-574. |
70 | Kapp P, Pelletier J D, Rohrmann A, et al. Wind erosion in the Qaidam basin, central Asia: Implications for tectonics, paleoclimate, and the source of the Loess Plateau[J]. GSA Today, 2011, 21(4/5): 4-10. |
71 | Rohrmann A, Heermance R, Kapp P, et al. Wind as the primary driver of erosion in the Qaidam Basin, China[J]. Earth and Planetary Science Letters, 2013, 374: 1-10. |
72 | Pullen A, Kapp P, McCallister A T, et al. Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications[J]. Geology, 2011, 39(11): 1 031-1 034. |
73 | Vandenberghe J, Renssen H, van Huissteden K, et al. Penetration of Atlantic westerly winds into Central and East Asia[J]. Quaternary Science Reviews, 2006, 25(17/18): 2 380-2 389. |
74 | Licht A, Pullen A, Kapp P, et al. Eolian cannibalism: Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau[J]. Bulletin, 2016, 128(5/6): 944-956. |
75 | Ludwig K R. ISOPLOT for MS-DOS, A Plotting and Regression Program for Radiogenic-isotope Data, for IBM-PC Compatible Computers, Version 1.00[R]. Denver:US Geological Survey, 1988. |
76 | Ludwing K R. Using Isoplot/Ex Version 2, A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronological Special Publications, 1999: 1-47. |
77 | Ludwig K R. A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003, 4: 1-70. |
78 | Vermeesch P. Isoplot R: A free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9(5): 1 479-1 493. |
79 | Saylor J E, Jordan J C, Sundell K E, et al. Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau[J]. Basin Research, 2017,30 (3):544-563. |
80 | Sharman G R, Sharman J P, Sylvester Z. DetritalPy: A Python-based toolset for visualizing and analysing detrital geo-thermochronologic data[J]. The Depositional Record, 2018, 4(2), 202-215. |
81 | Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312: 190-194. |
/
〈 |
|
〉 |