Deep-water Combined-flow Deposits of the Upper Ordovician Lashenzhong Formation in Zhuozishan Area, Western Margin of Ordos Basin
Received date: 2019-09-29
Revised date: 2019-11-18
Online published: 2020-02-12
Supported by
the National Natural Science Foundation of China “Study of the evolution of turbidity currents and its interaction with internal waves of Middle and Upper Ordovician on the southeastern margin of Alxa Block and western margin of Ordos Basin”(41272119);The Science Foundation of Yunnan Provincial Department of Education “Sedimentary hydrodynamics for preservation of soft impression fossil in Chengjiang Fauna”(2015Z030)
The research of deep-water combined-flow deposits is still in its infancy at present, which has great significance for discovering new case study and discussing the indication effects of combined-flow sedimentary structures on depositional environment. The Upper Ordovician Lashenzhong Formation in Zhuozishan area, Inner Mongolia, in the north of western Ordos Basin, is mainly deposited by turbidity currents concomitant with contour currents as well as internal-waves and internal-tides in deep-water slope and basin floor environment which display typical complex hydrodynamic conditions. Here we studied the deep-water combined-flow sedimentary structures of Lashenzhong Formation in detail based on careful field work, combined with the results of flume experiments and other related case studies in literatures. Several combined-flow sedimentary structures were found in deep-water environment, which include combined-flow-ripple lamination, quasi-planar lamination and small-scale hummocky cross-stratification-like structures. These sedimentary structures can be summarized vertically as 6 sedimentary structure successions: normal graded layer through wave-ripple lamination to combined-flow-ripple lamination (a), quasi-planar lamination through normal graded layer to combined- flow-ripple lamination (b), amphibolous normal graded layer overlaying by quasi-planar lamination (c), quasi-planar lamination through bi-directional cross-lamination to small-scale hummocky cross-stratification-like structures (d), amalgamated small-scale hummocky cross-stratification-like structures enveloped claystone (e) and combined- flow-ripple lamination enveloped claystone (f). The origin of deep-water combined-flow deposits perhaps is the interactions of turbidity currents, contour currents and internal-wave currents according to the sedimentary types and environment in Lashenzhong Formation. Based on the interactions between sedimentary currents and sea floor topography, four sedimentation zones were suggested: turbidity currents restrained zone (succession a and b), strong interaction zone (succession c), internal-wave action zone (succession d) and weak interaction zone (succession e and f). This study will be helpful for the study of interactions of internal-waves and internal-tides with sea floor topography, and related sedimentation zone division in geological records.
Xiangdong Li , Haiyan Chen , Hongda Chen . Deep-water Combined-flow Deposits of the Upper Ordovician Lashenzhong Formation in Zhuozishan Area, Western Margin of Ordos Basin[J]. Advances in Earth Science, 2019 , 34(12) : 1301 -1315 . DOI: 10.11867/j.issn.1001-8166.2019.12.1301
1 | Dumas S,Arnott R W C,Southard J B. Experiments on oscillatory-flow and combined-flow bed forms: Implications for interpreting parts of the shallow-marine sedimentary record[J]. Journal of Sedimentary Research,2005,75(3):501-513. |
2 | Harms J C.Hydraulic significance of some sand ripples[J].Geological Society of America Bulletin,1969,80(3):363-396. |
3 | Swift D J P,Figueiredo A G,Jr Freeland G L,et al. Hummocky cross-stratification and megaripples:A geological double standard?[J]. Journal of Sedimentary Petrology,1983,53(4):1 295-1 317. |
4 | N?ttvedt A,Kreisa R D. Model for the combined-flow origin of hummocky cross-stratification[J].Geology,1987,15(4):357-361. |
5 | Datta B,Sarkar S,Chaudhuri A K. Swaley cross-stratification in medium to coarse sandstone produced by oscillatory and combined flows:Examples from the Proterozoic Kansapathar Formation,Chhattisgarh Basin, M.P.,India[J]. Sedimentary Geology,1999,129(1/2):51-70. |
6 | Basilici G,de Luca P H V,Poiré D G. Hummocky cross-stratification-like structures and combined-flow ripples in the Punta Negra Formation (Lower-Middle Devonian, Argentine Precordillera):A turbiditic deep-water or storm-dominated prodelta inner-shelf system?[J]. Sedimentary Geology,2012,267/268:73-82. |
7 | Puga-Bernabéuá,Martín J M,Braga J C,et al. Offshore remobilization processes and deposits in low-energytemperate-water carbonate-ramp systems:Examples from the Neogenebasins of the Betic Cordillera (SE Spain)[J]. Sedimentary Geology,2014,304:11-27. |
8 | Arnott R W,Southard J B. Exploratory flow-duct experiments on combined-flow bed configurations and some implications for interpreting storm-event stratification[J]. Journal of Sedimentary Petrology,1990,60(2):211-219. |
9 | Perillo M M,Best J L,Yokokawa M,et al.A unified model for bedform development and equilibriumunder unidirectional,oscillatory and combined-flows[J]. Sedimentology,2014,61(7):2 063-2 085. |
10 | Perillo M M,Best J L,Garcia M H,et al. A new phase diagram for combined-flow bedforms[J]. Journal of Sedimentary Research,2014,84 (4):301-313. |
11 | Wu Xuxu,Parsons D R. Field investigation of bedform morphodynamics under combined flow[J]. Geomorphology, 2019,339:9-30. |
12 | Walker R G,Plint A G. Wave- and storm-dominated shallow marine systems[M]//Walker R G,James N P. Facies Models. Canada:Geological Association of Canada,1992:219-238. |
13 | Molgat M,Arnott R W C. Combined tide and wave influence on sedimentation patterns in the Upper Jurassic Swift Formation, south-eastern Alberta[J]. Sedimentology,2001,48(6):1 353-1 369. |
14 | Aschoff J L,Olariu C,Steel R J. Recognition and significance of bayhead delta deposits in therock record:A comparison of modern and ancient systems[J]. Sedimentology,2018,65(1):62-95. |
15 | Isla M F,Schwarz E,Veiga G D. Bedset characterization within a wave-dominated shallow-marinesuccession:An evolutionary model related to sediment imbalances[J]. Sedimentary Geology,2018,374:36-52. |
16 | Collins D S,Johnson H D,Allison P A,et al. Coupled 'storm-flood' depositional model:Application to the Miocene-Modern Baram Delta Province,north-west Borneo[J]. Sedimentology,2017,64(1):1 203-1 235. |
17 | Li M Z,Amos C L. Sheet flow and large wave ripples under combined wave and currents:Field observations,model predictions and effects on boundary layer dynamics[J]. Continental Shelf Research,1999,19(5):637-663. |
18 | Hill P R,Meulé S,Longuépée H. Combined-flow processes and sedimentary structures on the shoreface of the wave-dominated grande-riviére-de-la-baleine delta[J]. Journal of Sedimentary Research,2003,73(2):217-226. |
19 | Myrow P M,Fischer W,Goodge J W. Wave-modified turbidites:Combined-flow shoreline and shelf deposits,Cambrian,Antarctica[J]. Journal of Sedimentary Research,2002,72(5):641-656. |
20 | Pattison S A J. Storm-influenced prodelta turbidite complex in the Lower Kenilworth Member at Hatch Mesa,Book cliffs,Utah,USA:Implications for shallow marine facies models[J]. Journal of Sedimentary Research,2005,75(3):420-439. |
21 | Lamb M P,Myrow P M,Lukens C,et al. Deposits from wave-influenced turbidity currents:Pennsylvanian Minturn Formation,Colorado,USA[J]. Journal of Sedimentary Research,2008,78(7):480-498. |
22 | Li Xiangdong,He Youbin,Zheng Zhaochang,et al. Deep-water combined-flow sedimentary structures in Xujiajuan Formation of Xiangshan Group,Ningxia[J]. Acta Geologica Sinica,2010,84(2):221-232. |
22 | 李向东,何幼斌,郑昭昌,等. 宁夏香山群徐家圈组发现深水复合流沉积构造[J]. 地质学报,2010,84(2):221-232. |
23 | Abdi A,Gharaie M H M,Bádenas B. Internal wave deposits in Jurassic Kermanshah pelagic carbonates andradiolarites (Kermanshah area,West Iran)[J]. Sedimentary Geology,2014,314:47-59. |
24 | Tinterri R,Laporta M,Ogata K. Asymmetrical cross-current turbidite facies tract in a structurally-confined mini-basin (Priabonian-Rupelian,Ranzano Sandstone,northern Apennines,Italy)[J]. Sedimentary Geology,2017,352:63-87. |
25 | Tinterri R,Magalhaes P M,Tagliaferri A,et al. Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes:Examples from the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France)[J]. Sedimentary Geology,2016,344:382-407. |
26 | Pomar L,Molina J M,Ruiz-Ortiz P A,et al. Storms in the deep: Tempestite- and beach-like deposits in pelagic sequences (Jurassic, Subbetic, South of Spain)[J]. Marine and Petroleum Geology,2019,107:365-381. |
27 | Gao Zhenzhong,Luo Shunshe,He Youbin. Ordovician submarine fan systems in west margin of Ordos[J]. Oil & Gas Geology,1995,16(2):119-125. |
27 | 高振中,罗顺社,何幼斌. 鄂尔多斯盆地西缘奥陶纪海底扇沉积体系[J]. 石油与天然气地质,1995,16(2):119-125. |
28 | Zhang Kang. Olistostrome in Ordovician system,western and southern margin of Ordos Basin[J]. Acta Sedimentologica Sinica,1992,10(1):11-18. |
28 | 张抗. 鄂尔多斯盆地西、南缘奥陶系滑塌堆积[J]. 沉积学报,1992,10(1):11-18. |
29 | Zhao Jun,He Youbin,Xiao Bin,et al. Sedimentary characteristics and sedimentary model of calcirudite in the Wulalike Formation of Middle Ordovician in Zhuozishan area of Inner Mongolia[J]. Journal of Yangtze University(Nature Science Edition),2014,11(10):6-8. |
29 | 赵俊,何幼斌,肖彬,等. 桌子山地区中奥陶统乌拉力克组砾屑灰岩沉积特征及深水沉积模式研究[J]. 长江大学学报:自然科学版,2014,11(10):6-8. |
30 | Jin Huijuan,Sun Mingliang,Li Yuci. The "special" turbidite measure of the Middle Ordovician series in Zhuozishan area,Inner Mongolia[J]. Acta Sedimentologica Sinica,2004,23(1):34-40. |
30 | 晋慧娟,孙明良,李育慈. 内蒙古桌子山中奥陶统的“特殊”浊积岩系[J]. 沉积学报,2004,23(1):34-40. |
31 | Xiao Bin,He Youbin,Luo Jinxiong,et al. Submarine channel complex deposits of the Middle Ordovician Lashizhong Formation in Zhuozishan area,Inner Mongolia[J]. Geological Review,2014,60(2):321-331. |
31 | 肖彬,何幼斌,罗进雄,等. 内蒙古桌子山中奥陶统拉什仲组深水水道沉积[J]. 地质论评,2014,60(2):321-331. |
32 | Li Hua,He Youbin,Feng Bin,et al. Type and evolution of deep-water channel deposits of Ordovician Lashizhong Formation in western margin of Ordos Basin[J]. Earth Science,2018,43(6):2 149-2 159. |
32 | 李华,何幼斌,冯斌,等. 鄂尔多斯盆地西缘奥陶系拉什仲组深水水道沉积类型及演化[J]. 地球科学,2018,43(6):2 149-2 159. |
33 | Li Xiangdong,Que Yi,Huan Yaqi. Depositional model for contourites the Kelimoli Formation,Middle Ordovician,Zhuozishan area[J]. Geological Journal of China Universities,2018,24(2):285-296. |
33 | 李向东,阙易,郇雅棋. 桌子山地区中奥陶统克里摩里组深水等深流沉积模式[J]. 高校地质学报,2018,24(2):285-296. |
34 | Li Xiangdong,Chen Haiyan. Deep-water contour currents deposits of Upper Ordovician Lashizhong Formation in western margin of Ordos Basin[J]. Earth Science,2020.DOI:10.3799/dqkx.2019.119. |
34 | 李向东,陈海燕. 鄂尔多斯盆地西缘上奥陶统拉什仲组深水等深流沉积[J]. 地球科学,2020. DOI:10.3799/dqkx.2019.119. |
35 | Li Xiangdong,He Youbin,Wang Dan,et al. Internal-wave and internal-tide deposits of the Middle Ordovicaian Xiangshan Group Xujiajuan Formation,Ningxia[J]. Journal of Palaeogeography,2009,11(5):513-523. |
35 | 李向东,何幼斌,王丹,等.宁夏香山群徐家圈组内波和内潮汐沉积[J]. 古地理学报,2009,11(5):513-523. |
36 | Li Xiangdong,He Youbin,Wang Dan,et al. Analysis on palaeocurrent in the Xujiajuan Formation,Xiangshan Group,Middle Ordovicaian,in Southern Helan Mountains[J]. Geological Review,2009,55(5):653-662. |
36 | 李向东,何幼斌,王丹,等. 贺兰山以南中奥陶统香山群徐家圈组古水流分析[J]. 地质论评,2009,55(5):653-662. |
37 | Guo Yanru,Zhao Zhenyu,Zhang Yueqiao,et al. Development characteristics and new exploration areas of marine source rocks in Ordos Basin[J]. Acta Petrolei Sinica,2016,37(8):939-951. |
37 | 郭彦如,赵振宇,张月巧,等. 鄂尔多斯盆地海相烃源岩系发育特征与勘探新领域[J]. 石油学报,2016,37(8):939-951. |
38 | Liu Xun,You Guoqing. Tectonic regional subdivision of China in the light of plate theory[J]. Geology in China,2015,42(1):1-17. |
38 | 刘训,游国庆. 中国的板块构造区划[J]. 中国地质,2015,42(1):1-17. |
39 | Li Xiangdong,Que Yi,Huan Yaqi. Analysis of vertical sedimentary successions in the lower part of Kelimoli Formation,Middle Ordovician,Zhuozishan area[J]. Advances in Earth Science,2017,32(3):276-291. |
39 | 李向东,阙易,郇雅棋. 桌子山中奥陶统克里摩里组下段薄层状石灰岩垂向序列分析[J]. 地球科学进展,2017,32(3):276-291. |
40 | Wu Xingning,Sun Liuyi,Yu Zhou,et al. Lithofacies paleogeography of Ordovician in western Ordos Basin[J]. Lithologic Reservoirs,2015,27(6):87-96. |
40 | 吴兴宁,孙六一,于洲,等. 鄂尔多斯盆地西部奥陶纪岩相古地理特征[J]. 岩性油气藏,2015,27(6):87-96. |
41 | Guo Yanru,Zhao Zhenyu,Xu Wanglin,et al. Sequence stratigraphy of the Ordovician system in the Ordos Basin[J]. Acta Sedimentologica Sinica,2014,32(1):44-60. |
41 | 郭彦如,赵振宇,徐旺林,等. 鄂尔多斯盆地奥陶系层序地层格架[J]. 沉积学报,2014,32(1):44-60. |
42 | Fei Anwei. Trace fossil assemblages and palaeoenvironment of Middle Ordovician Gongwusu Formation,Zhuozishan, Inner Mongolia[J]. Geoscience,2000,14(3):366-372. |
42 | 费安玮. 桌子山中奥陶世公乌素组遗迹化石组合与古地理环境[J]. 现代地质,2000,14(3):366-372. |
43 | Li Xiangdong,Huan Yaqi. Origin of deep-water stripped-and-banded mudstones related to contour currents in the Ordovician,Zhuozishan area,Western margin of Ordos Basin[J]. Journal of Palaeogeography,2017,19(6):987-997. |
43 | 李向东,郇雅棋. 鄂尔多斯盆地西缘桌子山地区奥陶系深水条纹条带状泥岩等深流成因分析[J]. 古地理学报,2017,19(6):987-997. |
44 | Fei Anwei. Study of trace fossil assemblage and paleoenvironment of Middle Ordovician Lashizhong Formation,Ordos Basin[J]. Geological Journal of China Universities,2001,7(3):278-287. |
44 | 费安玮. 鄂尔多斯盆地拉什仲组遗迹化石组合与古环境[J]. 高校地质学报,2001,7(3):278-287. |
45 | Li Rihui. Identification of contourites in Middle Ordovician Gongwushu Formation,Zhuozishan,and depositional environment[J]. Oil and Gas Geology,1994,15(3):235-240. |
45 | 李日辉. 桌子山中奥陶统公乌素组等积岩的确认及沉积环境[J].石油与天然气地质,1994,15(3):235-240. |
46 | Li Rihui. Trace fossils and ichnofacies of middle Ordovician Gongwusu Formation,Zhuozishan,Inner Mongolia[J]. Acta Palaeontologica Sinica,1993,32(1):88-104. |
46 | 李日辉. 内蒙古桌子山地区中奥陶世公乌素组的遗迹化石及遗迹相[J]. 古生物学报,1993,32(1):88-104. |
47 | Liu Qun,Kneller B,Fallgatter C,et al. Tabularity of individual turbidite beds controlled by flow efficiency and degree of confinement[J]. Sedimentology,2018,65(7):2 368-2 387. |
48 | J-C Faugeres,Stow D A V. Bottom-current-controlled sedimentation:A synthesis of the contourite problem[J]. Sedimentary Geology,1993,82(1/4):287-297. |
49 | Gao Zhenzhong,Eriksson K A,He Youbin,et al. Deep-water Traction Current Deposits-A Study of Internal Tides, Internal Waves,Contour Currents and Their Deposits[M]. Beijing:Science Press, 1998. |
50 | Zhao Yulong,Liu Zhifei. Spatial distribution of contourites in global ocean and its paleoclimatic significance—The contribution of international ocean drilling to the studies of contourites[J]. Advances in Earth Science,2017,32(12):1 287-1 296. |
50 | 赵玉龙,刘志飞. 等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展,2017,32(12):1 287-1 296. |
51 | Tian Zhuangcai,Guo Xiujun,Yu Le,et al. Review of the seabed sediment resuspension by internal solitary wave[J]. Advances in Earth Science,2018,33(2):166-178. |
51 | 田壮才,郭秀军,余乐,等. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展,2018,33(2):166-178. |
52 | Pomar L,Morsilli M,Hallock P,et al. Internal waves,an under-explored source of turbulence events in the sedimentary record[J]. Earth-Science Reviews,2012,111(1/2):56-81. |
53 | Li Xiangdong. Proposed classification of internal-wave and internal-tide deposits in deep-water environment[J]. Geological Review,2013,59(6):1 097-1 109. |
53 | 李向东. 关于深水环境下内波、内潮汐沉积分类的探讨[J]. 地质论评,2013,59(6):1 097-1 109. |
54 | Jin Huijuan,Li Yuci,Fang Guoqing. Internal-wave and internal-tide deposits in the palaeostratigraphic record of the western Qinling Mountains and their origin[J]. Acta Sedimentologica Sinica,2002,20(1):80-83. |
54 | 晋慧娟,李育慈,方国庆. 西秦岭古代地层记录中内波、内潮汐沉积及其成因解释[J]. 沉积学报,2002,20(1):80-83. |
55 | Li Xiangdong,He Youbin,Zhang Mingji,et al. Sedimentary types of internal wave and internal tide deposits of Middle Ordovician,Xujiajuan Formation,Xiangshan Group,Ningxia Autonomous Region,China[J]. Advances in Earth Science,2011,26(9):1 006-1 014. |
55 | 李向东,何幼斌,张铭记,等. 宁夏中奥陶统香山群徐家圈组内波、内潮汐沉积类型[J]. 地球科学进展,2011,26(9):1 006-1 014. |
56 | Gladstone C,McClelland H L O,Woodcock N H,et al. The formation of convolute lamination in mud-rich turbidites[J]. Sedimentology,2018,65(5):1 800-1 825. |
57 | Arnott R W C. Quasi-planar-laminated sandstone beds of the lower Cretaceous Bootlegger Member, North-central Montana:Evidence of combined-flow sedimentation[J]. Journal of Sedimentary Research,1993,63(3):488-494. |
58 | Prave A R,Duke W L. Small-scale hummocky cross-stratification in turbidites:A form of antidune stratification?[J]. Sedimentology,1990,37(3):531-539. |
59 | Mulder T,Razin P,J-C Faugeres. Hummocky cross-stratification-like structures in deep-sea turbidites:Upper Cretaceous Basque basins (Western Pyrenees, France)[J]. Sedimentology,2009,56(4):997-1 015. |
60 | Kneller B C,Branney M J. Sustained high-density turbidity currents and the deposition of thick massive sands[J]. Sedimentology,1995,42(4):607-616. |
61 | Mulder T,Migeon S,Savoye B,et al. Inversely graded turbidite sequences in the deep Mediterranean:A record of deposits from flood-generated turbidity currents?[J]. Geo-Marine Letters,2001,21(2):86-93. |
62 | Sumner E J,Amy L A,Talling P J. Deposit structure and processes of sand deposition from deceleratingsediment suspensions[J]. Journal of Sedimentary Research,2008,78(8):529-547. |
63 | Dumas S,Arnott R W C. Origin of hummocky and swaley cross-stratification-The controlling influence of unidirectional current strength and aggradation rate[J]. Geology,2006,34(12):1 073-1 076. |
64 | Arnott R W C. Turbidites,and the case of the missing dunes[J]. Journal of Sedimentary Research,2012,82(6):379-384. |
65 | Xu Shumei,Feng Huaiwei,Li Sanzhong,et al. Study on caledonian movement in Helanshan and its surrounding area[J]. Acta Petrologica Sinica,2016,32(7):2 137-2 150. |
65 | 许淑梅,冯怀伟,李三忠,等. 贺兰山及周边地区加里东运动研究[J]. 岩石学报,2016,32(7):2 137-2 150. |
66 | Eoff J D. Sedimentary facies of the upper Cambrian (Furongian,Jiangshanian and Sunwaptan) Tunnel City Group,Upper Mississippi Valley:New in sight on the old stormy debate[J]. Sedimentary Geology,2014,302:102-121. |
/
〈 |
|
〉 |