Temporal and Spatial Characteristics of Mesoscale Eddies in the Northern South China Sea: Statistics Analysis Based on Altimeter Data
Received date: 2019-08-02
Revised date: 2019-09-15
Online published: 2019-12-09
Supported by
the National Natural Science Foundation of China “Influence of mesoscale eddies on the deepwater turbulent mixing in the South China Sea” (No.41576005) and “Deepwater sedimentation since the Miocene in the Central Basin of the South China Sea and its regional tectonic and environmental evolution significance” (No.41530964).First author: Wang Meng(1988-)
Mesoscale eddies are active and energetic in the South China Sea (SCS), and play an important role in regulating the multi-scale circulation and mass transportation in the region, especially for those long-lived strong eddies. Using AVISO altimeter data and outermost closed contour sea level anomaly method, this study identified and tracked mesoscale eddies in the northern SCS during 2011-2018, and focused on the temporal and spatial characteristics of mesoscale eddies in recent years. Similarly to previous results in this region, statistical results show that about 8.6 anticyclonic eddies and 4.5 cyclonic eddies (lifetime > 28 days) were born per year. Among them, about 1/3 of the total number are strong eddies (lifetime > 45 days), showing relatively strong dynamic characteristics, such as strong Eddy Kinetic Energy (EKE) and highly nonlinear feature. Statistics also show significant seasonal variability in mesoscale eddies’ birth places, trajectories and distribution of frequency of occurrence. Specifically, anticyclonic eddies mainly form at the north part of Luzon Strait between autumn and winter, and then move southwestward along isobaths. During this period, the largest value of the frequency of occurrence is over 30%. In summer, most of them form in the west off Luzon Island, and then move westward paralleling to latitude lines. In contrast, cyclonic mainly form in the west off Luzon Strait, and then move westward in winter and spring. During this period, the largest value is about 26%. In addition, observation finds that the strong mesoscale eddy pair could generate off the southwest of Taiwan Island. Analysis of the Kuroshio SCS Index (KSI) implies that loop current caused by Kuroshio intrusion is the most important mechanism for the formation of eddy pair.
Key words: Mesoscale eddies; Altimeter data; Statistics; Kuroshio; Northern South China Sea.
Meng Wang , Yanwei Zhang , Zhifei Liu , Jiawang Wu . Temporal and Spatial Characteristics of Mesoscale Eddies in the Northern South China Sea: Statistics Analysis Based on Altimeter Data[J]. Advances in Earth Science, 2019 , 34(10) : 1069 -1080 . DOI: 10.11867/j.issn.1001-8166.2019.10.1069
1 | Rossby T, Flagg C, Ortner P, et al. A tale of two eddies: Diagnosing coherent eddies through acoustic remote sensing[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12).DOI: 10.1029/2011JC007307. |
2 | de Jong M F, Bower A S, Furey H H. Two years of observations of warm-core anticyclones in the Labrador Sea and their seasonal cycle in heat and salt stratification[J]. Journal of Physical Oceanography, 2014, 44(2): 427-444. |
3 | Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167-216. |
4 | Sheen K L, Brearley J A, Naveira Garabato A C, et al. Modification of turbulent dissipation rates by a deep southern ocean eddy[J]. Geophysical Research Letters, 2015, 42(9): 3 450-3 457. |
5 | Shu Y, Xue H, Wang D, et al. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea[J]. Scientific Reports, 2016, 6: 24 338. |
6 | Yang Q, Zhou L, Tian J, et al. The roles of Kuroshio intrusion and mesoscale eddy in upper mixing in the northern South China Sea[J]. Journal of Coastal Research, 2013, 30(1): 192-198. |
7 | Mcwilliams J C. The nature and consequences of oceanic eddies[J]. Geophysical Monograph Series, 2008, 177: 5-15. |
8 | Spall M A. On the role of eddies and surface forcing in the heat transport and overturning circulation in marginal seas[J]. Journal of Climate, 2011, 24(18): 4 844-4 858. |
9 | Zhang Z, Wang W, Qiu B. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6 194): 322-324. |
10 | Wu C, Chiang T. Mesoscale eddies in the northern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(14): 1 575-1 588. |
11 | Yuan D, Han W, Hu D. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11). DOI: 10.1029/2005JC003412. |
12 | Metzger E J, Hurlburt H E. The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea[J]. Journal of Physical Oceanography, 2001, 31(7): 1 712-1 732. |
13 | Caruso M J, Gawarkiewicz G G, Beardsley R C. Interannual variability of the Kuroshio intrusion in the South China Sea[J]. Journal of Oceanography, 2006, 62(4): 559-575. |
14 | Chen G, Hou Y, Chu X, et al. Vertical structure and evolution of the Luzon warm eddy[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(5): 955-961. |
15 | Li L, Nowlin Jr W D, Su J. Anticyclonic Rings from the Kuroshio in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1998, 45(9): 1 469-1 482. |
16 | Xue H, Chai F, Pettigrew N, et al. Kuroshio Intrusion and the Circulation in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2).DOI: 10.1029/2002JC001724. |
17 | Chen R, Flierl G R, Wunsch C. A description of local and nonlocal eddy-mean flow interaction in a global eddy-permitting state estimate[J]. Journal of Physical Oceanography, 2014, 44(9): 2 336-2 352. |
18 | Yuan D, Han W, Hu D. Anti-cyclonic eddies northwest of Luzon in summer-fall observed by satellite altimeters[J]. Geophysical Research Letters, 2007, 34(13): L13610. DOI: 10.1029/2007GL029401. |
19 | Nan F, He Z, Zhou H, et al. Three long-lived anticyclonic eddies in the northern South China Sea[J]. Geophysical Research: Oceans, 2011, 116: C05002.DOI:10.1029/2010JC006790. |
20 | Zheng Q, Hu J, Zhu B, et al. Standing wave modes observed in the South China Sea deep basin[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4 185-4 199. |
21 | Liu Q, Kaneko A, Su J. Recent progress in studies of the South China Sea circulation[J]. Journal of Oceanography, 2008, 64(5): 753-762. |
22 | Tian Jiwei, Qu Tangdong. Advances in research on the deep South China Sea circulation[J]. Chinese Science Bulletin, 2012, 57(20): 1 827-1 832. |
22 | 田纪伟, 曲堂栋. 南海深海环流研究进展[J]. 科学通报, 2012, 57(20): 1 827-1 832. |
23 | Wang G, Su J, Chu P. Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophysical Research Letters, 2003, 30(21). DOI:10.1029/2003GL018532. |
24 | Xiu P, Chai F, Shi L, et al. A census of eddy activities in the South China Sea during 1993-2007[J]. Journal of Geophysical Research: Oceans, 2010, 115(C3). DOI: 10.1029/2009JC005657. |
25 | Chen G, Hou Y, Chu X. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research: Oceans, 2011, 116(C6). DOI: 10.1029/2010JC006716. |
26 | Lin Pengfei, Wang Fan, Chen Yongli, et al. Temporal and spatial variation characteristics on eddies in the South China Sea. I. Statistical analyses[J]. Acta Oceanologica Sinica, 2007, 29(3): 14-22. |
26 | 林鹏飞, 王凡, 陈永利, 等. 南海中尺度涡旋的时空特征: I. 统计分析[J]. 海洋学报, 2007, 29 (3): 14-22. |
27 | Nan F, Xue H, Xiu P, et al. Oceanic eddy formation and propagation southwest of Taiwan[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12). DOI:10.1029/2011JC007386. |
28 | Wang X, Li W, Qi Y, et al. Heat, salt and volume transports by eddies in the vicinity of the Luzon Strait[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 61: 21-33. |
29 | Feng B, Liu H, Lin P, et al. Meso-scale eddy in the South China Sea simulated by an eddy-resolving ocean model[J]. Acta Oceanologica Sinica, 2017, 36(5):9-25. |
30 | Wang L, Koblinsky C J, Howden S. Mesoscale variability in the South China Sea from the Topex/Poseidon altimetry data[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(4): 681-708. |
31 | Du Y, Yi J, Wu D, et al. Mesoscale oceanic eddies in the South China Sea from 1992 to 2012:Evolution processes and statistical analysis[J]. Acta Oceanologica Sinica, 2014, 33(11): 36-47. |
32 | Lin X, Dong C, Chen D, et al. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 99: 46-64.. |
33 | Souza J, de Boyer-Montégut C, Le Traon P-Y. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean[J]. Ocean Science, 2011, 7(3): 317-334. |
34 | Chelton D B, de Szoeke R A, Schlax M G, et al. Geographical variability of the first baroclinic Rossby radius of deformation[J]. Journal of Physical Oceanography, 1998, 28(3): 433-460. |
35 | Ducet N, Le Traon P-Y. Reverdin G. Global high‐resolution mapping of ocean circulation from Topex/Poseidon and Ers-1 and-2[J]. Journal of Geophysical Research: Oceans, 2000, 105(C8): 19 477-19 498. |
36 | Chaigneau A, Gizolme A, Grados C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns[J]. Progress in Oceanography, 2008, 79(2): 106-119. |
37 | Fu L L. Pattern and velocity of propagation of the global ocean eddy variability[J]. Journal of Geophysical Research: Oceans, 2009, 114(C11). DOI: 10.1029/2009JC005349. |
38 | Faghmous J H, Frenger I, Yao Y, et al. A daily global mesoscale ocean eddy dataset from satellite altimetry[J]. Scientific Data, 2015, 2: 150 028. |
39 | Zhang Y, Liu Z, Zhao Y, et al. Mesoscale eddies transport deep-sea sediments[J]. Scientific Reports, 2014, 4: 5 937. |
40 | Zhang Y, Liu Z, Zhao Y, et al. Effect of surface mesoscale eddies on deep-sea currents and mixing in the northeastern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2015, 122: 6-14. |
41 | Wang M, Zhang Y, Liu Z, et al. Temporal and spatial evolution of a deep-reaching anticyclonic eddy in the South China Sea[J]. Scinece in China(Series D),2019, 62: 1 002-1 023. |
42 | Wang G, Chen D, Su J. Winter eddy genesis in the eastern South China Sea due to orographic wind jets[J]. Journal of Physical Oceanography, 2008, 38(3): 726-732. |
43 | Zu T, Gan J, Erofeeva S Y. Numerical study of the tide and tidal dynamics in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2008, 55(2): 137-154. |
44 | Qu T. Upper-layer circulation in the South China Sea[J]. Journal of Physical Oceanography, 2000, 30(6): 1 450-1 460. |
45 | Wunsch C. The past and future ocean circulation from a contemporary perspective[M]// Ocean Circulation: Mechanisms and Impacts-past and Future Changes of Meridional Overturning. Washington D C: AGU, 2007: 53-74. |
46 | Jouanno J, Sheinbaum J, Barnier B, et al. Seasonal and interannual modulation of the eddy kinetic energy in the Caribbean Sea[J]. Journal of Physical Oceanography, 2012, 42(11): 2 041-2 055. |
47 | Nan F, Xue H, Chai F, et al. Identification of different types of Kuroshio intrusion into the South China Sea[J]. Ocean Dynamics, 2011, 61(9): 1 291-1 304. |
48 | Nan F, Xue H, Yu F. Kuroshio intrusion into the South China Sea: A review[J]. Progress in Oceanography, 2015, 137: 314-333. |
49 | Huang Z, Liu H, Hu J, et al. A double-index method to classify Kuroshio intrusion paths in the Luzon Strait [J]. Advances in Atmospheric Sciences, 2016, 33(6): 715-729. |
50 | Hu S, Fedorov A. Exceptionally strong easterly wind burst stalling El Ni?o of 2014[J]. Proceedings of the National Academy of Sciences, 2016, 113(8): 2 005-2 010. |
51 | Levine A, McPhaden M. How the July 2014 easterly wind burst gave the 2015-2016 El Ni?o a head start[J]. Geophysical Research Letters, 2016, 43(12): 6 503-6 510. |
/
〈 |
|
〉 |