Application of PSO-LIBSVM in Recognition of Potassium Salt Deposits
Received date: 2019-01-15
Revised date: 2019-05-10
Online published: 2019-07-29
Supported by
ect supported by the National Natural Science Foundation of China “The study on geophysical evaluation method of oil and potash in Sichuan Basin"(41372103)
The shortage of potassium salt seriously restricts the development of China's agriculture. Increasing the exploration and development of potash will help improve the self-sufficiency of potassium in China. With rich potassium salt resources, Sichuan basin is one of the most important research areas for potash exploration and development in China. Polyhalite is an important solid potassium salt mineral in Sichuan basin, often intercalated in rock minerals such as anhydrite, rock salt and dolomite. Aiming at the problem that conventional log interpretation methods are difficult to accurately identify polyhalites, this paper proposed a new Support Vector Machine (SVM) recognition method based on Particle Swarm Optimization (PSO) to classify polyhalites in Sichuan basin. Based on particle swarm optimization and support vector machine theory, combined with logging interpretation theory, the effective data sensitive to polyhalite logging response were selected as input samples to generate training sets and test sets randomly. The Radial Basis Function (RBF) parameters were optimized by particle swarm optimization, and the classification and prediction model of polyhalite was established. Compared with mud logging results, the recognition accuracy of SVM model based on particle swarm optimization reached 97.5758%, which is obviously better than that of SVM model optimized by cross validation method in recognition accuracy and speed. The results show that the model has broad application prospects in potash exploration in Sichuan basin.
Fuqiang Yang , Kegui Chen , Changbing Huang , Yuanyuan Chen , Jin Li , Xiaolin Ma . Application of PSO-LIBSVM in Recognition of Potassium Salt Deposits[J]. Advances in Earth Science, 2019 , 34(7) : 757 -764 . DOI: 10.11867/j.issn.1001-8166.2019.07.0757
1 | BaoMengfei, BaoRonghua, YanZhaoying. Changes in global potash resources, production and marketing in 2017[J]. Phosphate and Compound Fertilizer, 2019,34(3):1-4. |
1 | 鲍梦菲,鲍荣华,亓昭英.2017年全球钾盐资源及产销状况变化[J]. 磷肥与复肥, 2019,34(3):1-4. |
2 | ZhaoYuanyi, JiaoPengcheng, LiBotao, et al. Geological characteristics and resource potential of soluble potash in China[J]. Mineral Deposits, 2010, 29 (4): 649-656. |
2 | 赵元艺, 焦鹏程,李波涛,等.中国可溶性钾盐资源地质特征与潜力评价[J]. 矿床地质, 2010, 29(4):649-656. |
3 | MuYanzong, NieZhen, BuLingzhong, et al. Progress in study of potash resources of oil(gas) field brine in China[J].Advances in Earth Science, 2016, 31(2):147-160. |
3 | 穆延宗, 乜贞,卜令忠,等. 我国油(气)田水钾资源研究进展[J]. 地球科学进展, 2016, 31(2):147-160. |
4 | ChenKegui, LiChunmei, LiLi, et al. Geophysical logging criteria and discriminant model for the potassium-rich strata and their application to Sichuan Basin: A case study of Guang'an area of Central Sichuan[J]. Acta Geoscientica Sinica, 2013,34(5):623-630. |
4 | 陈科贵,李春梅,李利,等.四川盆地含钾地层的地球物理测井标志、判别模型与应用——以川中广安地区为例[J].地球学报,2013,34(5):623-630. |
5 | ChenKegui, LiJin, HuangChangbing, et al. Application of BP neural network in potassium-rich brine[J]. Advances in Earth Science, 2018, 33(6):614-622. |
5 | 陈科贵,李进,黄长兵,等.BP神经网络在富钾卤水中的应用研究[J].地球科学进展,2018,33(6):614-622. |
6 | ZhangZhiguo. Study on Artificial Neural Networks and Their Applications in Geoscience[D]. Jilin:Jilin University,2006. |
6 | 张治国. 人工神经网络及其在地学中的应用研究[D].吉林:吉林大学,2006. |
7 | WangGuosheng. Research on Theory and Algorithm for Support Vector Machine Classifier[D]. Beijing:Beijing University of Posts and Telecommunications,2007. |
7 | 王国胜. 支持向量机的理论与算法研究[D].北京:北京邮电大学,2007. |
8 | ChenKegui, WuLiulei, ChenYuanyuan, et al. Classification and recognition of polyhalite in Chuanzhong based on Support Vector Machine[J]. Advances in Earth Science, 2016, 31(10): 1 041-1 046. |
8 | 陈科贵,吴刘磊,陈愿愿,等. 基于支持向量机的川中杂卤石分类识别研究[J]. 地球科学进展, 2016,31(10):1 041-1 046. |
9 | CaoXu. Sketching-Alike Cross-Validation Contour Extraction[D]. Guangzhou:South China University of Technology,2018. |
9 | 曹旭. 基于素描式交叉验证的轮廓提取算法[D]. 广州:华南理工大学,2018. |
10 | ChenKegui,LiLi,WangGang,et al.Analysis of logging response characteristics and potassium-forming conditions of Early and Middle Triassic Strata in Nanchong Basin[J]. Mineral Deposits,2014,33(5):1 069-1 080. |
10 | 陈科贵, 李利, 王刚, 等. 四川盆地南充盐盆下、中三叠统测井响应特征及成钾条件分析[J]. 矿床地质, 2014, 33(5):1 069-1 080. |
11 | MeiQinghua, HeDengfa, WenZhu, et al. Geological structure and tectonic evolution of Leshan-Longnvsi paleo-uplift in Sichuan Basin,China[J]. Acta Petrolei Sinica, 2014, 35(1): 11-25. |
11 | 梅庆华, 何登发, 文竹, 等. 四川盆地乐山—龙女寺古隆起地质结构及构造演化[J]. 石油学报, 2014, 35(1):11-25. |
12 | FuBin, WangXingzhi, ZhangFan. Impact of sedimentation on Xujiahe Formation of Guang’an Structure [J]. Natural Gas Technology, 2010,(2): 20-22,78. |
12 | 付斌, 王兴志, 张帆. 沉积作用对广安构造须家河组储层的控制[J]. 天然气技术, 2010,(2):20-22,78. |
13 | VapnikV N. Statistical Learning Theory[M]. New York:John Wiley & Sons, Inc, 1998. |
14 | LuoJianrong. Study on Multi-Class Pattern Statistical Recognition Model and Application[D].Chongqing: Chongqing University,2009. |
14 | 罗建容. 多类统计模式识别模型及应用研究[D].重庆:重庆大学,2009. |
15 | TianYouwen, TangXiaoming. Study on state evaluation for microprocessor protective device based on SVM [J]. Power System Protection and Control, 2009, 37(4): 66-69. |
15 | 田有文, 唐晓明. 基于支持向量机的微机保护装置状态评估的研究[J]. 电力系统保护与控制, 2009, 37(4):66-69. |
16 | LuNing, WuBenling, LiuYing. Application of support vector machine model in load forecasting based on adaptive particle swarm optimization [J]. Power System Protection and Control, 2011, 39(15): 43-46. |
16 | 陆宁, 武本令, 刘颖. 基于自适应粒子群优化的 SVM模型在负荷预测中的应用[J]. 电力系统保护与控制,2011, 39(15): 43-46. |
17 | SunBin, YaoHaitao. The short-term wind speed forecast analysis based on the PSO-LSSVM predict model[J]. Power System Protection and Control, 2012, 40(5): 85-89. |
17 | 孙斌, 姚海涛. 基于PSO优化 LSSVM 的短期风速预测[J]. 电力系统保护与控制, 2012, 40(5): 85-89. |
18 | ShiFeng, WangXiaochuan, YuLei, et al. 30 Case Analysis of MATLAB Neural Network [M]. Beijing: Beijing Aerospace University Press, 2010. |
18 | 史峰, 王小川, 郁磊, 等. MATLAB神经网络30个案例分析[M]. 北京: 北京航空航天大学出版社, 2010. |
19 | FuQiang. Adaptive-grouping particle swarm algorithm[J]. Computer Engineering and Applications, 2011,47(15): 46-48,125. |
19 | 符强.一种自适应分群的粒子群算法[J].计算机工程与应用,2011,47(15):46-48,125. |
20 | YangBin. Neural Network and Its Application in Oil Well Logging[M]. Beijing: Petroleum Industry Press, 2005:94-191. |
20 | 杨斌. 神经网络及其在石油测井中的应用[M]. 北京:石油工业出版社, 2005:94-191. |
21 | ZhaoJunlong, LiGang, MaPingshe, et al. The application of network technology to petroleum logging interpretation[J]. Progress in Geophysics, 2010, 25(5): 1 744-1 751. |
21 | 赵军龙, 李纲, 麻平社, 等. 神经网络在石油测井解释中的应用综述[J]. 地球物理学进展, 2010, 25(5):1 744-1 751. |
/
〈 |
|
〉 |