Climate Change and Silk Road Civilization Evolution in Arid Central Asia: Progress and Issues

  • Fahu Chen ,
  • Guanghui Dong ,
  • Jianhui Chen ,
  • Yongqi Gao ,
  • Wei Huang ,
  • Tao Wang ,
  • Shengqian Chen ,
  • Juzhi Hou
Expand
  • 1. Key Laboratory of Alpine Ecology (LAE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2. Key Laboratory of West China’s Environmental System, College of Earth and Environmental Science, Lanzhou University, Lanzhou 730000, China
    3. Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    4. Nansen Environmental and Remote Sensing Center, Bergen N-5006, Norway
Chen Fahu(1962-), male, Danfeng County, Shaanxi Province, Professor, Academician of Chinese Academy of Sciences. Research areas include environmental change and the evolution of human civilization. E-mail: fhchen@itpcas.ac.cn

Received date: 2019-05-21

  Revised date: 2019-05-27

  Online published: 2019-07-05

Supported by

Foundation item: Project supported by the National Key R&D Program of China “Research on the impacts of climate change in arid central Asia and development of silk road civilization”(No. 2018YFA0606404);The National Natural Science Foundation of China “Environmental archaeology and environmental change”(No. 41825001)

Abstract

Arid central Asia is one of the regions most sensitive to global climate change, as well as the region with dramatically hydrological changes and fragile ecosystems. The region includes the main body of the ancient Silk Road, which played a key role in the cultural exchange and the rise and fall of Silk Road civilization. Scientific assessment of the risks faced by the sustainable development of human society in the arid central Asia under the background of global warming is a major scientific issue that has received much attention. The study of the relationship between cultural exchange, development of Silk Road civilization and climate change can provide a scientific basis for understanding the evolution rules of human-land relationship on different timescales in this area. This study summarized the research progress in the history of cultural exchanges, the rise and fall of Silk Road civilization, climate change during the Holocene, forcing mechanisms of climate and hydrological change on different timescales, as well as the process and rule of human-environment interaction. On this basis, we proposed that the study of the temporal and spatial patterns of Holocene climate change and the evolution of Silk Road civilization in arid central Asia, as well as the research on the interaction mechanisms between human and environment, are obviously insufficient. Solving the problems of regional imbalance of climate change and cultural evolution in arid central Asia and strengthening the cross-disciplinary study of geoscience and archaeology are effective ways to promote the study of climate change and changes of Silk Road civilization, which has important scientific and practical significance for understanding the evolution of human-land relations in the region, coping with the challenges of climate change, and serving the “One Belt, One Road” strategy.

Cite this article

Fahu Chen , Guanghui Dong , Jianhui Chen , Yongqi Gao , Wei Huang , Tao Wang , Shengqian Chen , Juzhi Hou . Climate Change and Silk Road Civilization Evolution in Arid Central Asia: Progress and Issues[J]. Advances in Earth Science, 2019 , 34(6) : 561 -572 . DOI: 10.11867/j.issn.1001-8166.2019.06.0561

References

1 Weiss H , Courty M A , Wetterstrom W , et al . The genesis and collapse of third millennium north Mesopotamian civilization[J]. Science, 1993, 261(5 124): 995-1 004.
2 Yancheva G , Nowaczyk N R , Mingram J , et al . Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445(7 123): 76-77.
3 Xu Jinghua . Sun, climate, hunger and mass migration[J]. Science in China (Series D),1998, 28(4): 366-384.
3 许靖华 . 太阳, 气候, 饥荒与民族大迁移[J]. 中国科学:D辑, 1998, 28(4): 366-384.
4 Kathayat G , Cheng H , Sinha A , et al . The Indian monsoon variability and civilization changes in the Indian subcontinent[J]. Science Advances, 2017, 3(12): e1701296. DOI: 10.1126/sciadv.1701296 .
5 Buckley B M , Anchukaitis K J , Penny D , et al . Climate as a contributing factor in the demise of Angkor, Cambodia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6 748-6 752.
6 Evans N P , Bauska T K , Gázquez-Sánchez F , et al . Quantification of drought during the collapse of the classic Maya civilization[J]. Science, 2018, 361(6 401): 498-501.
7 Binford M W , Kolata A L , Brenner M , et al . Climate variation and the rise and fall of an Andean civilization[J]. Quaternary research, 1997, 47(2): 235-248.
8 Chen F , Xu Q , Chen J , et al . East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Report, 2015, 5: 11 186. DOI: 10.1038/srep11186 .
9 Drake B L . Changes in North Atlantic Oscillation drove Population migrations and the collapse of the Western Roman Empire[J]. Scientific Reports, 2017,7:1 227. DOI: 10.1038/s41598-017-01289-z .
10 Bevan A , Colledge S , Fuller D , et al . Holocene fluctuations in human population demonstrate repeated links to food production and climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(49): E10524-E10531.
11 Wu W , Zheng H , Hou M , et al . The 5.5 cal ka BP climate event, population growth, circumscription and the emergence of the earliest complex societies in China[J]. Science China Earth Sciences, 2018, 61(2): 134-148.
12 Mischke S , Liu C , Zhang J , et al . The world’s earliest Aral-Sea type disaster: The decline of the Loulan Kingdom in the Tarim Basin[J]. Scientific Reports, 2017, 7: 43 102. DOI: 10.1038/srep43102 .
13 Chen F , Yu Z , Yang M , et al . Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3/4): 351-364.
14 Chen Fahu , An Chengbang , Dong Guanghui , et al . Human activities, environmental changes, and rise and decline of silk road civilization in Pan-Third Pole region[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 967-975.
14 陈发虎, 安成邦, 董广辉, 等 . 丝绸之路与泛第三极地区人类活动、环境变化和丝路文明兴衰[J]. 中国科学院院刊, 2017, 32(9): 967-975.
15 Zhang H , Wu J W , Zheng Q , et al . A preliminary study of oasis evolution in the Tarim Basin, Xinjiang, China[J]. Journal of Arid Environments, 2003, 55(3): 545-553.
16 Wu Jinglu , Ma Long , Ji Lili . Lake surface change of the Aral Sea and its environmental effects in the arid region of the Central Asia[J]. Arid Land Geography, 2009, 32(3): 418-422.
16 吴敬禄, 马龙, 吉力力 . 中亚干旱区咸海的湖面变化及其环境效应[J]. 干旱区地理, 2009, 32(3): 418-422.
17 Frankopan P . The Silk Roads: A New History of the World[M]. London: Bloomsbury Publishing, 2015.
18 Dong G , Yang Y , Han J , et al . Exploring the history of cultural exchange in prehistoric Eurasia from the perspectives of crop diffusion and consumption[J]. Science China Earth Sciences, 2017, 60(6): 1 110-1 123.
19 Frachetti M D , Smith C E , Traub C M . Nomadic ecology shaped the highland geography of Asia’s Silk Roads[J]. Nature, 2017, 543(7 644): 193-198.
20 Allentoft M E , Sikora M , Sj?gren K G , et al . Population genomics of Bronze Age Eurasia[J]. Nature, 2015, 522(7 555):167-172.
21 Chen F , Dong G , Zhang D , et al . Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP[J]. Science, 2015, 347(6 219): 248-250.
22 Rosenberg D . Early maceheads in the southern Levant: A “Chalcolithic” hallmark in Neolithic context [J]. Journal of Field Archaeology, 2010, 35(2): 204-216.
23 Roberts B W , Thornton C P , Pigott V C . Development of metallurgy in Eurasia[J]. Antiquity, 2009, 83 (322): 1 012-1 022.
24 Han Jianye . “Painted-Pottery road” and early eastern and western cultural contract[J]. Archaeology and Cultural Relics, 2013, (1): 28-37.
24 韩建业 . “彩陶之路”与早期中西文化交流[J]. 考古与文物, 2013, (1): 28-37.
25 Wertime T A . The beginnings of metallurgy: A new look: Arguments over diffusion and independent invention ignore the complex metallurgic crafts leading to iron[J]. Science, 1973, 182(4 115): 875-887.
26 De Ryck I , Adriaens A , Adams F . An overview of Mesopotamian bronze metallurgy during the 3rd millennium BC[J]. Journal of Cultural Heritage, 2005, 6(3): 261-268.
27 Chernykh E N . Ancient Metallurgy in the USSR: The Early Metal Age[M]. Cambridge: Cambridge University Press, 1992: 98-215.
28 Linduff K M , Mei J J . Metallurgy in Ancient Eastern Asia: Retrospect and Prospects[J]. Journal of World Prehistory, 2009, 22(3): 265-281.
29 Li Shuicheng . Westward Spread of Eastern: The Process of Prehistoric Cultural in Northwestern of China[M]. Beijing: Cultural Relics Press, 2009.
29 李水城 . 东风西渐: 中国西北史前文化之进程[M]. 北京: 文物出版社, 2009.
30 Gansu Provincial Institute of Cultural Relics . Daliwan Site in Qin’an City: Excavation Report[M]. Beijing: Cultural Relics Press, 2006: 30-47.
30 甘肃省文物考古研究所 . 秦安大地湾: 新石器时代遗址发掘报告[M]. 北京: 文物出版社, 2006: 30-47.
31 McNeill J R , McNeill W H . The Human Web: A Bird's-eye View of World History[M]. New York: WW Norton & Company, 2003.
32 Kuz?mina E E , Mari V H . The Prehistory of the Silk Road[M]. Philadelphia: University of Pennsylvania Press, 2008.
33 Anthony D W . The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World[M]. Princeton: Princeton University Press, 2010: 121-456.
34 Riehl S , Zeidi M , Conard N J . Emergence of agriculture in the foothills of the Zagros Mountains of Iran[J]. Science, 2013, 341(6 141): 65-67.
35 Zeder M A . Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(33): 11 597-11 604.
36 Zhao Z . New archaeobotanic data for the study of the origins of agriculture in China[J]. Current Anthropology, 2011, 52(Suppl.4): S295-S306.
37 Zuo X , Lu H , Jiang L , et al . Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(25): 6 486-6 491.
38 Liu X , Jones P J , Matuzeviciute G M , et al . From ecological opportunism to multi-cropping: Mapping food globalisation in prehistory[J]. Quaternary Science Reviews, 2019, 206: 21-28.
39 Ren Lele , Dong Guanghui . The history for origin and diffusion of “Six livestock”[J]. Chinese Journal of Nature,2016,38(4): 257-262.
39 任乐乐, 董广辉 . “六畜” 的起源和传播历史[J]. 自然杂志, 2016, 38(4): 257-262.
40 Wang T , Wei D , Chang X , et al . Tianshanbeilu and the Isotopic Millet Road: Reviewing the late Neolithic/Bronze Age radiation of human millet consumption from north China to Europe [J]. National Science Review, 2017: nwx015. DOI: 10.1093/nsr/nwx015 .
41 Long T , Leipe C , Jin G , et al . The early history of wheat in China from 14C dating and Bayesian chronological modelling[J]. Nature Plants, 2018, 4(5): 272-279.
42 Dong G . A new story for wheat into China[J]. Nature Plants, 2018, 4: 243-244.
43 Liu X , Lister D L , Zhao Z , et al . Correction: Journey to the east: Diverse routes and variable flowering times for wheat and barley en route to prehistoric China[J]. PloS ONE, 2018, 13(12): e0209518. DOI: 10.1371/journal.pone.0187405 .
44 Zeng X , Guo Y , Xu Q , et al . Origin and evolution of qingke barley in Tibet[J]. Nature Communications, 2018, 9(1): 5 433. DOI: 10.1038/s41467-018-07920-5 .
45 Spengler R N , Frachetti M , Doumani P , et al . Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2014, 281(1 783): 2013382. DOI: 10.1098/rspb.2013.3382 .
46 Matuzeviciute G M , Staff R A , Hunt H V , et al . The early chronology of broomcorn millet (Panicum miliaceum) in Europe[J]. Antiquity, 2013, 87(338): 1 073-1 085.
47 Zhou Weizhou , Ding Jingtai . Dictionary of the Silk Road[M]. Xi’an: Shaanxi People's Publishing House, 2006.
47 周伟洲, 丁景泰 . 丝绸之路大辞典[M]. 西安: 陕西人民出版社, 2006.
48 Yong Jichun . History of the Silk Roads[M]. Xi’an: Sanqin Publishing House, 2015.
48 雍际春 .丝绸之路历史沿革[M]. 西安: 三秦出版社, 2015.
49 Chen F , Jia J , Chen J , et al . A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016, 146: 134-146.
50 Wang W , Feng Z . Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: A synthesis of climatic records[J]. Earth-Science Reviews, 2013, 122: 38-57.
51 Cheng H , Sp?tl C , Breitenbach S F M , et al . Climate variations of Central Asia on orbital to millennial timescales[J]. Scientific Reports, 2016, 6: 36 975.
52 Chen F , Chen X , Chen J , et al . Holocene vegetation history, precipitation changes and Indian Summer Monsoon evolution documented from sediments of Xingyun Lake, southwest China[J]. Journal of Quaternary Science, 2014, 29(7): 661-674.
53 Chen F , Chen J , Holmes J , et al . Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region[J]. Quaternary Science Reviews, 2010, 29: 1 055-1 068.
54 Chen J , Chen F , Feng S , et al . Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms[J]. Quaternary Science Reviews, 2015, 107: 98-111.
55 Chen F , Huang W , Jin L , et al . Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming[J]. Science China Earth Science, 2011, 54(12): 1 812-1 821.
56 Huang W , Chen J H , Zhang X J , et al . Definition of the core zone of the “westerlies-dominated climatic regime”, and its controlling factors during the instrumental period[J]. Science China Earth Sciences, 2015, 58(5): 676-684.
57 Chen F , Chen J , Huang W , et al . Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354.
58 Liu X , Rao Z , Shen C , et al . Holocene solar activity imprint on centennial-to multidecadal-scale hydroclimate oscillations in arid central Asia[J]. Journal of Geophysical Research: Atmospheres,2019, 124(5): 2 562-2 573.
59 Carolin S A , Walker R T , Day C C , et al . Precise timing of abrupt increase in dust activity in the Middle East coincident with 4.2 ka social change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 116(1): 67-72.
60 Chen J , Liu J , Zhang X , et al . Unstable Little Ice Age climate revealed by high-resolution proxy records from northwestern China[J]. Climate Dynamics, 2019. DOI: 10.1007/s00382-019-04685-5 .
61 Zhao J , An C , Huang Y , et al . Contrasting early Holocene temperature variations between monsoonal East Asia and westerly dominated Central Asia[J]. Quaternary Science Reviews, 2017, 178: 14-23.
62 Huang X , Chen C , Jia W , et al . Vegetation and climate history reconstructed from an alpine lake in central Tienshan Mountains since 8.5 ka BP[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 432: 36-48.
63 Rao Z , Huang C , Xie L , et al . Long-term summer warming trend during the Holocene in central Asia indicated by alpine peat α-cellulose δ13C record[J]. Quaternary Science Reviews, 2019, 203: 56-67.
64 Berger A, Loutre M F, Insolation values for the climate of the last 10 million years[J]. Quaternary Science Review, 1991, 10: 297-317.
65 Jin L Y , Chen F H , Morrill C , et al . Causes of early Holocene desertification in arid central Asia[J]. Climatic Dynamics, 2012, 38(7/8): 1 577-1 591.
66 Carlson A E , Clark P U . Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation[J]. Reviews of Geophysics, 2012, 50(4): RG4007. DOI: 10.1029/2011RG000371 .
67 Enomoto T , Hoskins B J , Matsuda Y . The formation mechanism of the Bonin high in August[J]. Quarterly Journal of the Royal Meteorological Society, 2003, 129(587): 157-178.
68 Ding Q , Wang B . Circumglobal teleconnection in the Northern Hemisphere summer[J]. Journal of Climate, 2005, 18(17): 3 483-3 505.
69 Chen G S , Huang R H . Excitation mechanisms of the teleconnection patterns affecting the July precipitation in northwest China[J]. Journal of Climate, 2012, 25(22): 7 834-7 851.
70 Huang W , Feng S , Chen J , et al . Physical mechanisms of summer precipitation variations in the Tarim Basin in Northwestern China[J]. Journal of Climate, 2015, 28(9): 3 579-35 91.
71 Svendsen L , Hetzinger S , Keenlyside N , et al . Marine‐based multiproxy reconstruction of Atlantic multidecadal variability[J]. Geophysical Research Letters, 2014, 41(4): 1 295-1 300.
72 Mantua N J , Hare S R , Zhang Y , et al . A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1 069-1 080.
73 Drinkwater K F , Martin M , Iselin M , et al . The Atlantic Multidecadal Oscillation: Its manifestations and impacts with special emphasis on the Atlantic region north of 60°N[J]. Journal of Marine Systems, 2014, 133: 117-130. DOI: 10.1016/j.jmarsys.2013.11.001
74 Yu L , Furevik T , Otter? O H , et al . Modulation of the Pacific Decadal Oscillation on the summer precipitation over East China: A comparison of observations to 600-yrs control run of Bergen Climate Model[J]. Climate Dynamics, 2015, 44(1/2): 475-494.
75 Luo F , Li S , Gao Y , et al . The connection between the Atlantic Multidecadal Oscillation and the Indian Summer Monsoon since the Industrial Revolution is intrinsic to the climate system[J]. Environmental Research Letter,2018,13(9): 094020. DOI: 10.1088/1748-9326/aade11 .
76 Goswami B N , Madhusoodanan M S , Neema C P , et al . A physical mechanism for North Atlantic SST influence on the Indian summer monsoon[J]. Geophysical Research Letters, 2006, 33(2): L02706. DOI: 10.1029/2005GL024803 .
77 Dai Xingang , Wang Ping , Zhang Kaijing . A study on precipitation trend and fluctuation mechanism in northwestern China over the past 60 years[J]. Acta Physica Sinica, 2013, 62(12): 1-11.
77 戴新刚, 汪萍, 张凯静 . 近 60 年新疆降水趋势与波动机制分析[J]. 物理学报, 2013, 62(12): 1-11.
78 Huang W , Chen F H , Feng S , et al . Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation[J]. Chinese Science Bulletin, 2013, 58(32): 3 962-3 968.
79 Feng S , Hu Q . Variations in the teleconnection of ENSO and summer rainfall in northern China: A role of the Indian summer monsoon[J]. Journal of Climate, 2004, 17(24): 4 871-4 881.
80 Feng S , Hu Q . How the North Atlantic Multidecadal Oscillation may have influenced the Indian summer monsoon during the past two millennia[J]. Geophysical Research Letters, 2008, 35(1): L01707. DOI: 10.1029/2007GL032484 .
81 Wei W , Zhang R , Wen M , et al . Impact of Indian summer monsoon on the South Asian High and its influence on summer rainfall over China[J]. Climate Dynamics, 2014, 43(5/6): 1 257-1 269.
82 Zhang X , Jin L . Association of the Northern Hemisphere circumglobal teleconnection with the Asian summer monsoon during the Holocene in a transient simulation[J]. The Holocene, 2016, 26(2): 290-301.
83 Huang W , Chang S Q , Xie C L , et al . Moisture sources of extreme summer precipitation events in North Xinjiang and their relationship with atmospheric circulation[J]. Advances in Climate Change Research, 2017, 8(1): 12-17.
84 Gao Y , Sun J , Li F , et al . Arctic sea ice and Eurasian climate: A review[J]. Advances in Atmospheric Sciences, 2015, 32(1): 92-114.
85 Miles M W , Divine D V , Furevik T , et al . A signal of persistent Atlantic multidecadal variability in Arctic sea ice[J]. Geophysical Research Letters, 2014, 41(2): 463-469.
86 Zhang, R. Mechanisms for low-frequency variability of summer Arctic sea ice extent[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4 570-4 575.
87 Johannessen O M , Kuzmina S , Bobylev L P , et al . Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalization[J]. Tellus A: Dynamic Meteorology and Oceanography, 2016, 68(1): 28 234. DOI: 10.3402/tellusa.v68.28234 .
88 Svendsen L , Keenlyside N , Bethke I , et al . Pacific contribution to the early twentieth-century warming in the Arctic[J]. Nature Climate Change, 2018, 8(9): 793-797.
89 Tokinaga H , Xie S P , Mukougawa H . Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24): 6 227-6 232.
90 Li F , Orsolini Y , Wang H , et al . Atlantic multidecadal oscillation modulates the impacts of Arctic sea ice decline[J]. Geophysical Research Letters, 2018, 45(5): 2 497-2 506.
91 Screen J A , Francis J A . Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability[J]. Nature Climate Change, 2016, 6(9): 856-860.
92 Jia X , Dong G , Li H , et al . The development of agriculture and its impact on cultural expansion during the late Neolithic in the Western Loess Plateau, China[J]. The Holocene, 2013, 23(1): 85-92.
93 Dong G , Jia X , An C , et al . Mid-Holocene climate change and its effect on prehistoric cultural evolution in eastern Qinghai Province, China[J]. Quaternary Research, 2012, 77(1): 23-30.
94 Dong G , Wang L , Cui Y , et al . The spatiotemporal pattern of the Majiayao cultural evolution and its relation to climate change and variety of subsistence strategy during late Neolithic period in Gansu and Qinghai Provinces, northwest China[J]. Quaternary International, 2013, 316: 155-161.
95 Cullen H M , deMenocal P B , Hemming S , et al . Climate change and the collapse of the Akkadian empire: Evidence from the deep sea[J]. Geology, 2000, 28(4): 379-382.
96 Staubwasser M , Sirocko F , Grootes P M , et al . Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability[J]. Geophysical Research Letters, 2003, 30(8): 1 425. DOI: 10.1029/2002GL016822 .
97 Dodson J R , Li X , Zhou X , et al . Origin and spread of wheat in China[J]. Quaternary Science Reviews, 2013, 72: 108-111.
98 Dong G . Understanding past human-environment interaction from an interdisciplinary perspective[J]. Science Bulletin, 2018, 63(16): 1 023-1 024.
99 Dong G , Ren L , Jia X , et al . Chronology and subsistence strategy of Nuomuhong Culture in the Tibetan Plateau[J]. Quaternary International, 2016, 426: 42-49.
100 Yang Y , Dong G , Zhang S , et al . Copper content in anthropogenic sediments as a tracer for detecting smelting activities and its impact on environment during prehistoric period in Hexi Corridor, Northwest China[J]. The Holocene, 2017, 27(2): 282-291.
101 Zhang S , Yang Y , Storozum M J , et al . Copper smelting and sediment pollution in Bronze Age China: A case study in the Hexi corridor, Northwest China[J]. Catena, 2017, 156: 92-101.
102 Huang X , Liu S , Dong G , et al . Early human impacts on vegetation on the northeastern Qinghai-Tibetan Plateau during the middle to late Holocene[J]. Progress in Physical Geography, 2017, 41(3): 286-301.
103 Shen H , Zhou X , Zhao K , et al . Wood types and human impact between 4300 and 2400 yr BP in the Hexi Corridor, NW China, inferred from charcoal records[J]. The Holocene, 2018, 28(4): 629-639.
104 Tan Jingze , Li Liming , Zhang Jianbo , et al . Craniometrical evidence for population admixture between Eastern and Western Eurasians in Bronze Age southwest Xinjiang[J]. Chinese Science Bulletin, 2013, 58(3): 299-306.
104 谭婧泽, 李黎明, 张建波, 等 . 新疆西南部青铜时代欧亚东西方人群混合的颅骨测量学证据[J]. 科学通报, 2012, 57(28): 2 666-2 673.
105 Shao Huiqiu . The Development of the Pre-historic Cultures in Xinjiang and the Interaction with Neighbor Cultures[M]. Beijing: Science Press, 2010.
105 邵会秋 . 新疆史前时期文化格局的演进及其与周邻文化的关系[M]. 北京: 科学出版社, 2010.
106 An Chengbang , Wang Wei , Duan Futao , et al . Environmental changes and cultural exchange between East and West along the Silk Road in arid Central Asia[J]. Acta Geographica Sinica, 2017, 72(5): 875-891.
106 安成邦, 王伟, 段阜涛, 等 . 亚洲中部干旱区丝绸之路沿线环境演化与东西方文化交流[J]. 地理学报, 2017, 72(5): 875-891.
107 Li H , Liu F , Cui Y , et al . Human settlement and its influencing factors during the historical period in an oasis-desert transition zone of Dunhuang, Hexi Corridor, northwest China[J]. Quaternary International, 2017, 458: 113-122.
108 Shi Z , Chen T , Storozum M J , et al . Environmental and social factors influencing the spatiotemporal variation of archaeological sites during the historical period in the Heihe River Basin, northwest China[J]. Quaternary International,2019, in press. DOI: 10.1016/j.quaint.2018.12.016 .
109 Qin X , Liu J , Jia H , et al . New evidence of agricultural activity and environmental change associated with the ancient Loulan kingdom, China, around 1500 years ago[J]. The Holocene, 2012, 22(1): 53-61.
110 Cai Y , Chiang J C H , Breitenbach S F M , et al . Holocene moisture changes in western China, Central Asia, inferred from stalagmites[J]. Quaternary Science Reviews, 2017, 158: 15-28.
111 Owczarek P , Opa?a-Owczarek M , Rahmonov O , et al . Relationships between loess and the Silk Road reflected by environmental change and its implications for human societies in the area of ancient Panjikent, Central Asia[J]. Quaternary Research, 2018, 89(3): 691-701.
112 Zhang D D , Pei Q , Lee H F , et al . The pulse of imperial C hina: A quantitative analysis of long-term geopolitical and climatic cycles[J]. Global Ecology and Biogeography, 2015, 24(1): 87-96.
113 Hellenthal G , Busby G B J , Band G , et al . A genetic atlas of human admixture history[J]. Science, 2014, 343(6 172): 747-751.
114 Pederson N , Hessl A E , Baatarbileg N , et al . Pluvials, droughts, the Mongol Empire, and modern Mongolia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(12): 4 375-4 379.
115 Schmid B V , Büntgen U , Easterday W R , et al . Climate-driven introduction of the Black Death and successive plague reintroductions into Europe[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10): 3 020-3 025.
116 Chen F , Wang J , Jin L , et al . Rapid warming in mid-latitude central Asia for the past 100 years[J]. Frontiers of Earth Science in China, 2009, 3(1): 42. DOI: 10.1007/s11707-009-0013-9 .
117 Brohan P , Kennedy J J , Harris I , et al . Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D12): D12106. DOI: 10.1029/2005JD00 6548 .
118 Han Delin . Artificial Oasis in Xinjiang[M].Beijing: China Environmental Science Press, 2000.
118 韩德林 . 新疆人工绿洲[M]. 北京: 中国环境科学出版社, 2000.
119 Micklin P P . Desiccation of the Aral Sea: A water management disaster in the Soviet Union[J]. Science, 1988, 241(4 870): 1 170-1 176.
120 Mirzabaev A , Goedecke J , Dubovyk O , et al . Economics of Land Degradation in Central Asia[M]. Berlin: Springer, 2016: 261-290.
Outlines

/