Study on the Area Variation of Qinghai Lake Based on Long-Term Landsat 5/8 Multi-Band Remote Sensing Imagery

  • Weixiao Han ,
  • Chunlin Huang ,
  • Yunchen Wang ,
  • Juan Gu
Expand
  • 1. Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Key Laboratory of Western China's Environmental Systems, Ministry of Education, Lanzhou University, Lanzhou 730000, China
Han Weixiao(1990-), male, Lanzhou City, Gansu Province, Ph.D student. Research areas include remote sensing big data.|Han Weixiao(1990-), male, Lanzhou City, Gansu Province, Ph.D student. Research areas include remote sensing big data.

Received date: 2018-11-16

  Revised date: 2018-12-06

  Online published: 2019-05-27

Supported by

Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences " CASEarth Big Data Science Project"(No.XDA19040500);The Open Foundation of MOE Key Laboratory of Western China's Environmental System, Lanzhou University "Water information extraction of Qinghai Lake based on remote sensing images”(No.lzujbky-2017-kl01)

Abstract

As a high-altitude inland lake, Qinghai Lake's annual change in surface water area is critical for climate change and water cycle in the cold and arid regions. In order to study the spatial and temporal variation of area of Qinghai Lake in the past 30 years, extract 459 images from Landsat 5/8 that covering Qinghai Lake from 1986 to 2017 (excluding 2012). Apply six common water extraction methods to extract the surface water area of ??Qinghai Lake and analyze the differences of methods. Finally, obtain the annual surface water area variation of Qinghai Lake from 1986 to 2017 by using MNDWI and WI2015 water extraction methods for Landsat5 TM and Landsat8 OLI images respectively, and analyze its variation trend. The results show that the area of ??Qinghai Lake decreased by 175.34 km2 from 1989 to 2003, and the average annual reduction rate was 12.52 km2/a . The area of ??Qinghai Lake increased by 183.43 km2 from 2003 to 2017, and the average annual increase rate was 13.10 km2/a. The area of ??Qinghai Lake increased by 104.46 km2, and the average annual increase rate was 3.37 km2/a from 1986 to 2017.

Cite this article

Weixiao Han , Chunlin Huang , Yunchen Wang , Juan Gu . Study on the Area Variation of Qinghai Lake Based on Long-Term Landsat 5/8 Multi-Band Remote Sensing Imagery[J]. Advances in Earth Science, 2019 , 34(4) : 346 -355 . DOI: 10.11867/j.issn.1001-8166.2019.4.0346

References

1 Yang Y , Liu Y , Zhou M , et al . Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach[J]. Remote Sensing of Environment, 2015, 171: 14-32.
2 Alsdorf D E , Lettenmaier D P . Tracking fresh water from space[J]. Science, 2003, 301(5 639): 1 491-1 494.
3 Br?nmark C , Hansson L A . Environmental issues in lakes and ponds: Current state and perspectives[J]. Environmental Conservation, 2002, 29(3): 290-307.
4 Tranvik L J , Downing J A , Cotner J B , et al . Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnology and Oceanography, 2009,54(6 part2): 2 298-2 314.
5 Tulbure M G , Broich M . Spatiotemporal dynamic of surface water bodies using Landsat time-series data from 1999 to 2011[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79: 44-52.
6 Verpoorter C , Kutser T , Seekell D A , et al . A global inventory of lakes based on high‐resolution satellite imagery[J]. Geophysical Research Letters, 2014, 41(18): 6 396-6 402.
7 Lewis Jr W M . Global primary production of lakes: 19th Baldi Memorial Lecture[J]. Inland Waters, 2011, 1(1): 1-28.
8 Li Yu , Liu Yuan . Long-term reconstructions and simulations of the hydrological cycle in the inland rivers, arid China: A case study of the Shiyang River drainage basin[J]. Advances in Earth Science, 2017, 32(7): 731-743.
8 李育,刘媛 . 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J].地球科学进展,2017,32(7):731-743.
9 Seekell D A , Pace M L , Tranvik L J , et al . A fractal‐based approach to lake size‐distributions[J]. Geophysical Research Letters, 2013, 40(3): 517-521.
10 Downing J A , Prairie Y T , Cole J J , et al . The global abundance and size distribution of lakes, ponds, and impoundments[J]. Limnology and Oceanography, 2006, 51(5): 2 388-2 397.
11 Toure S I , Stow D A , Shi H , et al . Land cover and land use change analysis using multi-spatial resolution data and object-based image analysis[J]. Remote Sensing of Environment, 2018, 210: 259-268.
12 Camps-Valls G . Machine learning in remote sensing data processing[C]//Machine Learning for Signal Processing, MLSP 2009. IEEE International Workshop on IEEE, 2009: 1-6.
13 Pekel J F , Cottam A , Gorelick N , et al . High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7 633): 418.
14 Jia K , Jiang W , Li J , et al . Spectral matching based on discrete particle swarm optimization: A new method for terrestrial water body extraction using multi-temporal Landsat 8 images[J]. Remote Sensing of Environment, 2018, 209: 1-18.
15 Crist E P . A TM tasseled cap equivalent transformation for reflectance factor data[J]. Remote Sensing of Environment, 1985, 17(3): 301-306.
16 Gao B C . NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3): 257-266.
17 Yue H , Liu Y , Wang H , et al . Analysis of dynamic change of Hongjiannao Lake based on MNDWI[C]// IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2017, 57(1): 012005.
18 Wang X , Xie S , Zhang X , et al . A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 68: 73-91.
19 Fisher A , Flood N , Danaher T . Comparing Landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment, 2016, 175: 167-182.
20 Feyisa G L , Meilby H , Fensholt R , et al . Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140: 23-35.
21 Xu Hanzeyu , Liu Chong , Wang Junbang , et al . Study on extraction of cirtrus orchard in Gannan Region based on Google Earth Engine platform[J]. Journal of Geo-information Science, 2018, 20(3): 396-404.
21 徐晗泽宇,刘冲,王军邦,等 .Google Earth Engine平台支持下的赣南柑橘果园遥感提取研究[J].地球信息科学学报,2018,20(3):396-404.
22 Gorelick N , Hancher M , Dixon M , et al . Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202: 18-27.
23 Patel N N , Angiuli E , Gamba P , et al . Multitemporal settlement and population mapping from Landsat using Google Earth Engine[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 35: 199-208.
24 Liu X , Hu G , Chen Y , et al . High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform[J]. Remote Sensing of Environment, 2018, 209: 227-239.
25 Wang Shuai , Xu Hanqiu , Shi Tingting . Retireval of tasseled cap transformation coefficients for GF-1 WFV2 sensor data[J]. Advances in Earth Science, 2018, 33(6): 641-652.
25 王帅,徐涵秋,施婷婷 .GF-1 WFV2传感器数据的缨帽变换系数反演[J].地球科学进展,2018,33(6):641-652.
26 Cai Y , Ke C Q , Duan Z . Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data[J]. Science of the Total Environment, 2017, 607: 120-131.
27 Zhang G , Xie H , Duan S , et al . Water level variation of Lake Qinghai from satellite and in situ measurements under climate change[J]. Journal of Applied Remote Sensing, 2011, 5(1): 053532.
28 Yuan Y , Li D L , An D . Respons of water level in Qinghai Lake to climate change in the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2012, 31(1): 57-64.
29 Li X Y , Xu H Y , Sun Y L , et al . Lake-level change and water balance analysis at Lake Qinghai, west China during recent decades[J]. Water Resources Management, 2007, 21(9): 1 505-1 516.
30 Ding Y J , Liu F J . Estimating on water balance elements in the drainage basin of Qinghai Lake[J]. Arid Land Geography, 1993, 16(4): 25-30.
31 Yin Q , Yang Y . Remote sensing monitoring of Lake Qinghai based on EOS/MODIS data[J]. Journal of Lake Sciences, 2005, 17(4): 356-360.
32 Che T , Li X , Jin R . Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data[J]. Chinese Science Bulletin, 2009, 54(13): 2 294-2 299.
33 McFeeters S K . The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7): 1 425-1 432.
34 Xu H . Modification of Normalised Difference Water Index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14): 3 025-3 033.
Outlines

/