Quality Evaluation of Offshore Data in the Earth Magnetic Anomaly Grid(2-arc-Minute Resolution)Taking the Southern Section of the Kolbeinsey Ridge in the Arctic Region as an Example

  • Chunguan Zhang ,
  • Xiang Li ,
  • Bingqiang Yuan ,
  • Lijun Song
Expand
  • 1. School of Earth Sciences and Engineering, Xi’an Shiyou University, Xi’an 710065, China
Zhang Chunguan(1981-), male, Yudu County, Jiangxi Province, Associate professor. Research areas include integrated geophysical exploration and tectonophysics. E-mail:chunguan-zhang@163.com|Zhang Chunguan(1981-), male, Yudu County, Jiangxi Province, Associate professor. Research areas include integrated geophysical exploration and tectonophysics. E-mail:chunguan-zhang@163.com

Received date: 2018-09-25

  Revised date: 2019-02-15

  Online published: 2019-04-28

Supported by

The project supported by the Natural Science Basic Research Plan in Shaanxi Province of China “Tectonic attribute of basin basement of the Northeastern Xinjiang: Constraint of geophysical data”(No. 2017JM4007);The China Geological Survey Project “Study on the geological structure features of the 21st Century Maritime Silk Road”(No. DD20160227)

Abstract

In order to evaluate the quality of the offshore magnetic data in the Earth Magnetic Anomaly Grid (2-arc-minute resolution)(EMAG2), the authors chose the aeromagnetic data at 1∶500 000 and 1∶1 000 000 scales of the southern section of the Kolbeinsey Ridge with a total area of 193 500 km2 to compare and analyze. Based on the EMAG2 data, the authors obtained the EMAG2 (downward continuation 4 km) and the aeromagnetic anomaly (upward continuation 4 km) using the analytical continuation method. Then, the correlation coefficients between the aeromagnetic anomaly (upward continuation 4 km) and the EMAG2, and the aeromagnetic anomaly and the EMAG2 (downward continuation 4 km) were calculated by the correlation analysis method. Finally, through comprehensive analysis of the features of these correlation coefficients and differences, the quality of the magnetic data of the southern section of the Kolbeinsey Ridge was evaluated in the database EMAG2. The results showed that the EMAG2 integrated a large number of the airborne or offshore magnetic data. The quality of the offshore magnetic data is relatively high in the offshore areas with dense lines. However, the quality of the offshore magnetic data is relatively low if the EMAG2 data at 4 km altitude is converted to the anomaly data at sea level.

Cite this article

Chunguan Zhang , Xiang Li , Bingqiang Yuan , Lijun Song . Quality Evaluation of Offshore Data in the Earth Magnetic Anomaly Grid(2-arc-Minute Resolution)Taking the Southern Section of the Kolbeinsey Ridge in the Arctic Region as an Example[J]. Advances in Earth Science, 2019 , 34(3) : 288 -294 . DOI: 10.11867/j.issn.1001-8166.2019.03.0288

References

1 MausS, BarckhausenU, BerkenboschH, et al. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements [J]. Geochemistry Geophysics Geosystems, 2009, 10(8): Q08005. DOI:10.1029/2009GC002471.
2 VerardC, FloresK, StampfliG. Geodynamic reconstructions of the South America-Antarctica plate system [J]. Journal of Geodynamics, 2012, 53: 43-60.
3 ZhangChangda. Models of the Earth’s lithospheric magnetic field and their applications [J]. Geophysical & Geochemical Exploration, 2013, 37(1): 1-10.
3 张昌达. 岩石圈磁场模型及其应用[J]. 物探与化探, 2013, 37(1): 1-10.
4 DicksonW, SchiefelbeinC F, OdegardM E, et al. Petroleum systems asymmetry across the South Atlantic Equatorial Margins [J]. Geological Society Special Publications, 2016, 431(1): 219-233.
5 MeyerB, ChulliatA, SaltusR. Derivation and error analysis of the earth magnetic anomaly grid at 2 arc min resolution version 3 (EMAG2v3) [J]. Geochemistry Geophysics Geosystems, 2017, 18: 4 522-4 537.
6 VervelidouF, ThebaultE, KorteM. A high-resolution lithospheric magnetic field model over southern Africa based on a joint inversion of CHAMP, Swarm, WDMAM, and ground magnetic field data [J]. Solid Earth, 2018, 9: 897-910.
7 WilliamsS E, WhittakerJ M, MüllerR D. Full-fit, palinspastic reconstruction of the conjugate Australian-Antarctic margins [J]. Tectonics, 2011, 30: TC6012. DOI:10.1029/2011TC002912.
8 SchlindweinV, SchmidF. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere [J]. Nature, 2016, 535 (7 611): 276-279.
9 SetonM, MüllerR D, ZahirovicS, et al. Global continental and ocean basin reconstructions since 200 Ma [J]. Earth-Science Reviews, 2012, 113(3/4): 212-270.
10 LiChungeng, LuYu, WangJian. A global reference model of Curie-point depths based on EMAG2 [J]. Scientific Reports, 2017, 7:45 129. DOI:10.1038/srep45129.
11 Idarraga-GarciaJ, VargasC A. Depth to the bottom of magnetic layer in south America and its relationship to Curie isotherm, Moho depth and seismicity behavior [J]. Geodesy and Geodynamics, 2018, 9(1): 93-107.
12 GaoGuoming, KangGuofa, LiGuangquan, et al. Crustal magnetic anomaly and Curie surface beneath Tarim Basin, China, and its adjacent area [J]. Canadian Journal of Earth Sciences, 2015, 52(6): 1-11.
13 SunShida, ChenChao, DuJinsong, et al. Magnetic characteristics and tectonic implications of crust in Junggar Basin and its surroundings [J]. Earth Science, 2016, 41(7): 1 216-1 224.
13 孙石达,陈超,杜劲松,等. 准噶尔盆地及邻区地壳磁性特征及其构造意义[J]. 地球科学, 2016, 41(7): 1 216-1 224.
14 GaoJinyao, WuZhaocai, WangJian, et al. Review of researches on the magnetic quiet zone at the northern continental margin of the south China sea and its comparison with those in the global oceans [J]. Advances in Earth Science, 2009, 24(6): 577-587.
14 高金耀, 吴招才, 王健, 等. 南海北部陆缘磁静区及与全球大洋磁静区对比的研究评述[J]. 地球科学进展, 2009, 24(6): 577-587.
15 HuYi, WangLiming, ZhongCuicai, et al. Gravity and magnetic characteristics of the Weddell Sea and its tectonic significance [J]. Advances in Earth Science, 2015, 30(11): 1 231- 1 238.
15 胡毅, 王立明, 钟贵才, 等. 威德尔海的重磁场特征及其构造意义[J]. 地球科学进展, 2015, 30(11): 1 231-1 238.
16 MatzkaJ, RasmussenT M, OlesenA V, et al. A new aeromagnetic survey of the North Pole and the Arctic Ocean north of Greenland and Ellesmere Island [J]. Earth Planets Space, 2010, 62(10): 829-832.
17 ZhengHui, WangYong, WangHubiao. Simulation of geomagnetic aided submarine navigation based on EMAG2 [J]. Progress in Geophysics, 2012, 27(4): 1 795-1 803.
17 郑晖, 王勇, 王虎彪. 地球磁场异常格网(EMAG2)辅助潜艇导航仿真研究[J]. 地球物理学进展, 2012, 27(4): 1 795-1 803.
18 ZhengHui, WangYong, WangHubiao, et al. Simulation research of Earth’s gravity and geomagnetism potential field aided underwater navigation [J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1 198-1 202.
18 郑晖, 王勇,王虎彪,等. 地球重磁位场辅助水下潜艇导航仿真研究[J]. 武汉大学学报:信息科学版, 2012, 37(10): 1 198-1 202.
19 ZhengHui, WangHubiao, WuLin, et al. Simulation research on gravity-geomagnetism combined aided underwater navigation [J]. Journal of Navigation, 2013, 66(1): 83-98.
20 GuanZhining. Geomagnetic Field and Magnetic Exploration [M]. Beijing: Geological Publishing House, 2005.
20 管志宁. 地磁场与磁力勘探[M]. 北京: 地质出版社, 2005.
21 ZhangChunguan, DongYunpeng, YuanBingqiang, et al. A genesis analysis of the regional gravity and magnetic anomalies in the northern part of Eastern Xinjiang, Northwest China [J]. Petroleum Science and Technology, 2014, 32(17): 2 075-2 085.
22 ZhangChunguan, YuanBingqiang, ZhangGuoli. Quality evaluation of land gravity data in the latest global gravity database V23 [J]. Advances in Earth Science, 2017, 32(1): 75-82.
22 张春灌, 袁炳强, 张国利. 最新全球重力数据库V23中陆域重力资料质量评估[J]. 地球科学进展, 2017, 32(1): 75-82.
Outlines

/