SOME RESEARCH ADVANCES ON DETAILED METAM ORPHIC PROCESS IN THE LAST FIVE YEARS
Received date: 2001-03-13
Revised date: 2001-08-22
Online published: 2001-12-01
In the past five years, some research advances of detailed metamorphic process is reviewed, in the following aspects:(1)chemical zoning and chemical gradient of metamorphic minerals on mm-μm scales were carefully investigated;(2)it was discovered that different elements of minerals have different abilities in resisting post-peak cooling;(3)singular value decomposition (SVD) was adopted to quantitatively judge mass equilibrium relationships, and later, to decipher the equilibriumdisequilibrium thermodynamic relationships, between assemblages of minerals;(4)the original chemical composition of minerals involved in post-peak decomposition or net transfer reaction was tried to regain;(5)the concept and method of high precision relative geothermobarometry, which is not dependent on thermochemical data or activity-composition relations of minerals involved, was developed;(6)compensation law was introduced to geospeedometry, and thus the cooling rate-time relation may be directly displayed;(7)the newly developed technique of M-ssbauer milliprobe was used to determine in situ Fe3+ contents of minerals in an area as small as 50×30 μm2;(8)LP-ICPMS, 40Ar/39Ar laser-probe, electron microbe, and secondary ion mass spectrometry (SIMS) were developed to determiner in situ radioactive ages of minerals, thus continuous dating of a complete metamorphic process is possible. In the near future, the following work should be done: (a) to refine and adopt the advanced methods and instruments mentioned above, in order to investigate the various aspects and determine the speed of metamorphism;(b)to study on and summarize the characteristics of metamorphism of rocks from different tectonic terranes; (c) to do a great number of reversed equilibrium experiments on minerals, and derive high-precision thermochemical data, and to have better understanding of mixing properties of the relevant minerals;(d)to model the metamorphic process via petrological experiments, and to provide insights into metamorphic dynamics.
WU Chunming,GENG Yuansheng . SOME RESEARCH ADVANCES ON DETAILED METAM ORPHIC PROCESS IN THE LAST FIVE YEARS[J]. Advances in Earth Science, 2001 , 16(6) : 785 -794 . DOI: 10.11867/j.issn.1001-8166.2001.06.0785
[1] Shen Qihan, Zhuang Yuxun, Geng, Yuansheng. Some research progresses of metamorphic petrology and geology of China in the 1990s[A]. In: Ouyang Ziyuan ed. Summaries and Perspectives of Mineralogy, Petrology and Geochemistry between the Two Centuries[C]. Beijing: Nuclear Energy Press, 1998. 86-93. [沈其韩,庄育勋,耿元生.90年代以来我国变质岩石学和变质地质学研究的若干进展[A].见:欧阳自远主编.世纪之交矿物学岩石学地球化学的回顾与展望[C]. 北京:原子能出版社,1998.86-93.]
[2] Wang Renmin. Some research progresses and perspectives[A]. In: Ouyang Ziyuan ed. Summaries and Perspectives of Mineralogy, Petrology and Geochemistry between the Two Centuries[C]. 1998. 105-107. [王仁民.变质岩石学的若干进展和发展趋势[A].见:欧阳自远主编.世纪之交矿物学岩石学地球化学的回顾与展望[C]. 北京:原子能出版社,1998.105-107.]
[3] Gao Pingxian. Some problems in the studies of porphyroblast inclusion trails [J]. Progress in Precambrian Research, 1997, 20: 55-63. [高坪仙.变斑晶包裹体形迹研究的几个问题 [J].前寒武纪研究进展,1997,20(4):55-63.]
[4] You Zhendong. The global distribution of ultrahigh-pressure metamorphic rocks and its rhythms of the Earth's evolution [J]. Earth Science Frontiers, 1997, 4:271-280. [游振东.超高压变质岩的全球分布与地球演化节律 [J]. 地学前缘,1997, 4:271-280.]
[5] Cong Bolin, Wang Qingchen. Recent research progress of the Dabieshan-Sulu ultra-high pressure metamorphic belt[J]. Chinese Science Bulletin, 1999, 44: 1 127-1 141.[从柏林,王清晨.大别山—苏鲁超高压变质带研究的最新进展[J]. 科学通报,1999,44:1 127-1 141.]
[6] Wang Qingchen. Development of studying Ultrahigh-Pressure Metamorphic rocks from China during the past 15 years [J]. Acat Geoscientia Sinica, 2001, 22: 11-16. [王清晨. 中国超高压变质岩十五年研究进展 [J]. 地球学报,2001, 22:11-16.]
[7] Gacía-Casco A, Torres-Roldán R L. Natural metastable reactions involving garnet, staurolite and cordierite: implications for petrogenetic grids and the extensional collapse of the beltic-rif belt [J]. Contributions to Mineralogy and Petrology, 1999, 136: 131-153.
[8] St-Onge M R, Ijewliw O J. Mineral corona formation during high-P retrogression of granulitic rocks, Ungava orogen, Canada [J]. Journal of Petrology, 1996, 37: 553-582.
[9] Spear F S, Florence F P. Thermobarometry in granulites: pitfalls and new approaches [J]. Precambrian Research, 1992, 55: 209-241.
[10] Indares A. Metamorphic interpretation of high-pressure-temperature metapelites with preserved growth zoning in garnet, eastern Grenville Province, Canadian Shield [J]. Journal of Metamorphic Geology, 1995, 13: 475-486.
[11] Spear F S, Parrish R R. Petrology and cooling rates of the Valhalla Complex, British Columbia, Canada [J]. Journal of Petrology, 1996, 37: 733-765.
[12] Liu Shuwen, Zhang Jinjiang, Zheng Yadong. P-T path of the metamorphism coeval to deformation, Xiaoqinling metamorphic complex [J]. Chinese Science Bulltin, 1997, 42: 312-318. [刘树文,张进江,郑亚东.小秦岭变质核杂岩同变形期的P-T路径 [J].科学通报,1997,42:312-318.]
[13] Kohn M J, Spear F S. Retrograde net transfer reaction insurance for pressure-temperature estimates [J]. Geology, 2000, 28: 1 127-1 130.
[14] Raase P. Feldspar thermometry: a valuable tool for deciphering the thermal history of granulite-facies rocks, as illustrated with metapelites from Sri Lanka [J]. Canadian Mineralogist, 1998, 36: 67-86.
[15] Fitzsimons I C W, Harley S L. The influence of retrograde cation exchange on granulite P-T estamates and a convergence technique for the recovery of peak metamorphic conditions [J]. Journal of Petrology, 1994, 35: 543-576.
[16] Scott D J, St-Onge M R. Constraints on Pb closure temperature intitanite based on rocks from the Ungava Orogen, Canada: implications for U-Pb geochronology and p-T-t path determinations [J]. Geology, 1995, 23: 1 123-1 126.
[17] Spear F S, Markussen J C. Mineral zoning, P-T-X-M phase relations, and metamorphic evolution of some Adirondeck granulites, New York [J]. Journal of Petrology, 1997, 38: 757-783.
[18] Wei Chunjing, Wang Shiguang, Zhang Lifei, et al. Some insights on the P-Tpath and exhumation of the ultrahigh-pressure eclogites in central China [J]. Acta Petrologica Sinica, 1996, 12: 70-78. [魏春景,王式光,张立飞,等.对中国东部超高压榴辉岩的P-T轨迹及回返机制的新认识 [J].岩石学报,1996,12:70-78.]
[19] Zhang Zeming, Wei Bize, Han Yujing, et al. Metamorphism,deformation and fluid evolution of the high-pressure eclogite facies metamorphic belts in the northern Hubei Province [J]. Acta Petrologica Sinica, 1999, 15: 48-56. [张泽明,韦必则,韩郁菁,等.鄂北高压榴辉岩相变质带的变质、变形和流体演化 [J]. 岩石学报,1999,15:48-56.]
[20] Whitney D L, Lang H M, Ghent E D. Quantitative determination of metamorphic reaction history: mass balance relations between groundmass and mineral inclusion assemblages in metamorphic rocks [J]. Contributions to Mineralogy and Petrology, 1995, 120: 404-411.
[21] Ye Kai, Cong Bolin, Ye Danian. The possible subduction of continental material to depths greater than 200 km [J]. Nature, 2000, 407: 734-736.
[22] Mukhopadhyay B, Holdaway M J, Koziol A M. A statistical model of thermodynamic mixing properties of Ca-Mg-Fe2+ garnets [J]. American Mineralogist, 1997, 82: 165-181.
[23] Holdaway M J. Application of new experimental and garnet margules data to the garnet-biotite geothermometer [J]. American Mineralogist, 2000, 85: 881-892.
[24] Geiger C A. Volumes of mixing in aluminosilicate garnets: solid solution and strain behavior [J]. American Mineralogist, 2000, 85: 893-897.
[25] Mattews A. Oxygen isotope geothermometers for metamorphic rocks [J]. Journal of Metamorphic Geology, 1994, 12: 211-219.
[26] Nimis P. Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems [J]. Contributions to Mineralogy and Petrology, 1999, 135: 62-74.
[27] Polyakov V B, Kharlashina N N. Effect of pressure on equilibrium isotopic fractionation [J]. Geochimica et Cosmochimica Acta, 1994, 58: 4 739-4 750.
[28] Canil D. The Ni-in-garnet geothermometer: calibration at natural abundances [J]. Contributions to Mineralogy and Petrology, 1999, 136: 240-246.
[29] Heinrich W, Andrehs G, Franz G. Monazite-xenotime miscibility gap thermometry I. An empirical calibration [J]. Journal of Metamorphic Geology, 1997, 15: 3-16.
[30] Pyle J M, Spear F S. An empirical garnet (YAG)-xenotime thermometer [J]. Contributions to Mineralogy and Petrology, 2000, 138: 51-58.
[31] Kruhl J H. Prism and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometers [J]. Journal of Metamorphic Geology, 1996, 14: 581-589.
[32] Worley B, Powell R. High-precision relative thermobarometry: theory and a worked example [J]. Journal of Metamorphic Geology, 2000, 18: 91-101.
[33] Fel'dman V I, Sazonova L V, Kotelnikov S I. Geobarometers for shock metamorphism -experimental justification [A]. 31th International Geological Congress Abstracts[C]. 2000.
[34] Ravna E K. The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration [J]. Journal of Metamorphic Geology, 2000, 18: 211-219.
[35] Wu Chunming, Zhao Yingjun. Precise re-calibration of the garnet-muscovite geothermometer [J]. Science in China (series D), 2001, 31: 162-170. [吴春明、赵英俊.石榴石—白云母温度计的合理修正 [J].中国科学(D辑),2001, 31: 162-170.]
[36] Robie R A, Hemingway B S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar(105 Pascals) and at higher temperatures [J]. US Geological Survey Bulletin, 1995, No. 2131.
[37] Berman R G, Aranovich L Ya. Optimized standard state and solution properties of minerals I. Calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2 [J]. Contributions to Mineralogy and Petrology, 1996, 126: 1-24.
[38] Gottschalk M. Internally consistent thermodynamic data for rock-forming minerals [J]. European Journal of Mineralogy, 1997, 9: 175-223.
[39] Holland T J B, Powell R. An internally consistent thermodynamic data for phases of geological interests [J]. Journal of Metamorphic Geology, 1998, 16: 309-343.[40] Berman R G. Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications [J]. Canadian Mineralogist, 1991, 29: 833-855.
[41] Spear F S. Relative thermobarometry and metamorphic P-T paths [A]. In: Daly J S, Cliff R A, Yardley B W D, eds. Evolution of Metamorphic Belts [C]. London: Geological Society Special Publication, 1989, 43: 63-81.
[42] Spear F S, Ferry J M, Rumble D. Analytical formulation of phase Equilibria: the Gibbs’ method [J]. Reviews in Mineralogy, 1982, 10: 105-152.
[43] Spear F S, Selverstone J. Quantitative P-T paths from zoned minerals: theory and tectonic applications [J]. Contributions to Mineralogy and Petrology, 1983, 83: 348-357.
[44] Powell R, Holland T J B. Optimal geothermometry and geobarometry [J]. American Mineralogist, 1994, 79: 120-133.
[45] Fraser G, Worley B, Sandiford M. High-precision geothermobarometry across the high Himalayan metamorphic sequence, Langtang Valley, Nepal [J]. Journal of Metamorphic Geology, 2000, 18: 665~681.
[46] Lasage A C. Geospeedometry: an extension of geothermometry [A]. In: Saxena S K, ed. Kinetics and Equilibrium in Mineral Reactions[C]. Advances in Physical Geochemistry. New York: Springer, 1983, 3: 81-114.
[47] Ehlers K, Powell R. Cooling rate histories from garnet+biotite equilibrium [J]. American Mineralogist, 1994, 79: 737-744.
[48] Jaoul O, Sautter V. A new approach to geospeedometry based on the “compensation law” [J]. Physics of the Earth and Planteary Interiors, 1999, 110: 95-114.
[49] Perchuk A L. Geospeedometry and time scales of high-pressure metamorphism [J]. International Geology Review, 2000, 42: 207-223.
[50] Ganguly J, Cheng W, Chakraborty S. Cation diffusion in alunminosilicate garnets: experimental in pyrope-almandine diffusion couples [J]. Contributions to Mineralogy and Petrology, 1998, 131: 171-180.
[51] Freer R, Edwards A. An experimental study of CA-(Fe, Mg) interdiffusion in silicate garnets [J]. Contributions to Mineralogy and Petrology, 1999, 134: 370-379.
[52] Zema M, Domeneghetti M C, Tazzoli V. Order-disorder kinetics in orthopyroxene with exsolution products [J]. American Mineralogist, 1999, 84: 1 895-1 901.
[53] Stimpfl M, Ganguly J, Molin G. Fe2+-Mg order-disorder in orthopyroxene: equilibrium fractionation between the octahedral sites and thermodynamic analysis [J]. Contributions to Mineralogy and Petrology, 1999, 136: 297-309.
[54] Heinemann R, Kroll H, Langenhorst F, et al. Time and temperature variation of the intracrystalline Fe2+, Mg fractionation in Johnstown meteoritic orthopyroxene [J]. European Journal of Mineralogy, 2000, 12: 163-176.
[55] Droop G T R. A general equation for estimating Fe3+ concentrations in ferromanesian silicates and oxides from microprobe analyses, using stoichiometric criteria [J]. Mineralogical Magazine, 1987, 51: 431-435.
[56] Leake B E, et al. Nomenclature of amphiboles: report of the Subcommittee on Ampjiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names [J]. American Mineralogist, 1997, 82: 1 019-1 037.
[57] Delaney J S, Bajt S R, Sutton S R, et al. In situ microanalysis of Fe3+/ΣFe in amphibole by X-ray absorption near edge-structure (XANES) spectroscopy in mineral spectroscopy: A Tribute to Roger G Burns [J]. The Geochemical Society Specil Publication, 1996, 5: 165-171.
[58] Kato T. Fe2+/Fe3+ mapping with the electron probe micro analyzer (EMPA)[A]. 31th International Geological Congress Abstracts[C]. 2000.
[59] Enders M, Speer D, Maresch W V. The determination of the iron oxidation ratio in minerals with the electron microprobe—is it worth the effort? [A]. 31th International Geological Congress Abstracts[C]. 2000.
[60] McCammon C A, Chinn I L, Gurney J J, et al. Ferric iron content of mineral inclusions in diamonds from George Creek, USA determined using M-ssbauer spectroscopy: implications for oxygen fugacity [J]. Contributions to Mineralogy and Petrology, 1998, 133: 30-37.
[61] Sobolev V N, McCammon C A, Taylor L A, et al. Precise Mssbauer milliprobe determination of ferric iron in rock-forming minerals and limitations of electron microprobe analysis [J]. American Mineralogist, 1999, 84: 78-85.
[62] Guidotti C V, Yates M G, Dyar M D, et al. Petrogenetic implications of the Fe3+ content of muscovite in pelitic schists [J]. American Mineralogist, 1994, 79: 793-795.
[63] Finger F, Broska I, Roberts M P, et al. Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps [J]. American Mineralogist, 1998, 83: 248-258.
[64] Roberts M P, Finger F. Do U-Pb zircon ages from granulites reflect peak metamorphic conditions? [J]. Geology, 1997, 25: 319-322.
[65] Li S G, Jagoutz E, Li Q L. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China [J]. Geochimica et Cosmochimica Acta, 2000, 64: 1 077-1 093.
[66] Fryer B J, Jackson S E, Longerich H P. The application of laser ablation microprobe-inductively couple plasma-mass spectrometry (LAM-ICP-MS) to in situ (U)-Pb geochronology [J]. Chemical Geology, 1993, 109: 1-8.
[67] Guan Hong, Sun Min, Xu Ping. Geochronological study of zircons from high-grade gneisses of Fuping Complex by LP-ICPMS technique [J]. Acta Petrologica Sinica, 1998, 14: 460-470. [关鸿,孙敏,徐平.阜平杂岩中几种不同类型片麻岩的锆石激光等离子体质谱年代学研究 [J].岩石学报,1998, 14:460-470.]
[68] Sun Min, Guan Hong. Zircon U-Pb ages of the Fuping Complex and their implications: some comments on the geochronological study of the Precambrian high-grade metamorphic terranes [J]. Acta Petrologica Sinica, 2001, 17: 145-156 [孙敏,关鸿.阜平杂岩年龄及其地质意义:兼论前寒武高级变质地体的定年问题 [J].岩石学报,2001,17:145-156.]
[69] Burgess R, Turner G, Harris J W. 40Ar/39Ar laser probe studies of clinopyroxene inclusions in eclogitic diamonds [J]. Geochimica et Cosmochimica Acta, 1992, 56:389-402.
[70] Hu Shiling, Guo Jinghui, Dan Tongmo, et al. Continuous laser-probe 40Ar/39Ar dating on garnet and plagioclase: constraint on metamorphism of high-pressure basic granulite from Sanggan area, northern China Craton [J]. Acta Petrologica Sinica, 1999, 15: 518-523. [胡世玲,郭敬辉,戴潼谟,等.桑干地区高压麻粒岩中石榴石和斜长石的连续激光探针40Ar/39Ar等时年龄及其地质意义 [J].岩石学报,1999, 15:518-523.]
[71] Lanzirotti A, Hanson G N. An assessment of the utility of staurolite in U-Pb dating of metamorphism [J]. Contributions to Mineralogy and Petrology, 1997, 129: 352-365.
[72] Montel J, Foret S, Veschambre M, et al. Electron microprobe dating of monazite [J]. Chemical Geology, 1996, 131: 37-53.
[73] Cocherie A, Lengendre O, Peucat J J, et al. Geochronology of polygenic monazites constrainted by in situ electron microprobe Th-U-total Pb determinations: implications for Pb behavior in monazite [J]. Geochimica et Cosmochimca Acta, 1998, 62: 2 475-2 497.
[74] Williams M L, Jercinovic M J, Terry M P. Age mapping and dating of monazite on the electron microprobe: deconvoluting multistage tectonic histories [J]. Geology, 1999, 27: 1 023-1 026.
[75] De Wolf C P, Belshaw N S, O'Nions R K. A metamorphic history from micron-scale 207Pb/206Pb chronometry of Archean monazite [J]. Earth and Planetary Science Letters, 1993, 120: 207-220.
[76] Zhu X K, O'Nions R K, Belshaw N S, et al. Lewisian crustal history from in situ SIMS mineral chronology and related metamorphic textures [J]. Chemical Geology, 1997, 136: 205-218.
[77] Kruhl J H. Grain boundary patterns: fractal nature and crystallographic control—new aspects of analyzing metamorphic rocks[A]. 31th International Geological Congress Abstracts[C]. 2000.
[78] Wang Xinshe, Zheng Yadong, Yang Chonghui, et al. Determination of the deformation temperatute and strain rate by the fractal shape of dynamically recrystallized quartz grains [J]. Journal of Mineralogy and Petrology, 2001, 20: 1-6. [王新社,郑亚东,杨崇辉,等.用动态重结晶石英颗粒的分形确定变形温度及应变速率 [J]. 矿物岩石学杂志,2001,20:1-6.]
/
〈 |
|
〉 |