Decimation and Spectrum Correlation Analysis of Gravity Solid Tide Signal Based on Surface-Simplex Swarm Evolution Optimization Algorithm
Received date: 2018-06-28
Revised date: 2018-12-02
Online published: 2019-03-26
Supported by
Project supported by the National Natural Science Foundation of China "Research on key signal processing algorithms for extracting geophysical and seismic precursor information from gravitational solid tidal signals"(No. 41364002);Project supported by the National Natural Science Foundation of China "Research on key signal processing algorithms for extracting geophysical and seismic precursor information from gravitational solid tidal signals" (No. 41364002).
In order to reveal the correlation between the harmonic components in the earth's solid tidal wave and the non-correlation superposition relationship, and based on these relations, the tidal harmonic implicit in the gravitational solid tidal signal was analyzed. According to the position relationship among the Earth, the moon and the sun's rotating orbit, an orthogonal decomposition model of tidal force was established. Furthermore, on the orthogonal decomposition model of gravity solid tidal wave based on the independent component analysis of the improved SSSE intelligent optimization algorithm, the spectral correlation method was used to analyze the independent components of gravity solid tidal wave. Thus, the multiplicative demodulation after the orthogonal decomposition of the conformal wave was completely realized. Finally, the above model and algorithm were used to compare and analyze the actual observation data and the theoretical signal as reference background. The results show that the proposed model and method can effectively achieve the orthogonal decomposition of tidal harmonics, highlight the weak energy of the long period harmonics component, and reflect the change of tidal harmonic modulation relationship from the spectral correlation map.
Xinbao Yi , Wei Wei , Haiyan Quan . Decimation and Spectrum Correlation Analysis of Gravity Solid Tide Signal Based on Surface-Simplex Swarm Evolution Optimization Algorithm[J]. Advances in Earth Science, 2019 , 34(2) : 148 -155 . DOI: 10.11867/j.issn.1001-8166.2019.02.0148
1 | Xu Houze . The Tides of the Solid Earth[M]. Wuhan: Hubei Science and Technology Press, 2010. |
1 | 许厚泽 .固体地球潮汐[M].武汉:湖北科学技术出版社,2010. |
2 | Zhou Jiangcun , Sun Heping , Xu Jianqiao , et al . Tidal strain and tidal stress in the Earth’s interior[J]. Chinese Journal of Geophysics, 2013,56(11):3 779-3 786. |
2 | 周江存,孙和平,徐建桥,等 .地球内部应变与应力固体潮[J],地球物理学报, 2013,56(11):3 779-3 786. |
3 | Melchior, Du Pinren . Solid Tide of Planetary Earth [M].Beijing: Science Press, 1984. |
3 | 梅尔基奥尔,杜品仁 .行星地球的固体潮[M].北京:科学出版社,1984. |
4 | Zhang Li , Fu Rongshan , Zhou Zhi , et al . Extraction of seismic precursory information from gravity tide at Kunming station based on HHT[J]. Acta Seismological Sinica, 2007,29(2):222-226. |
4 | 张立,傅容珊,周挚,等 .基于HHT提取重力固体潮的地震前兆信息[J].地震学报,2007,29(2):222-226. |
5 | Sue Yoshiki , Hayakawa Masashi . An approach to the validation of thermal and electromagnetic earthquake precursors: Effects of Earth tides[J]. Journal of Asian Earth Sciences,2011, 41(4/5):428-433. |
6 | Quan Haiyan , Liu Yan . The cyclic spectrum analysis of IMFs of EMD and its application to gravity tide[J]. Advances in Earth Science,2016,31(9):919-925. |
6 | 全海燕, 刘艳 . EMD模态分量的谱相关分析法及其对重力固体潮信号的解调分析[J]. 地球科学进展, 2016, 31(9):919-925. |
7 | Metivier Laurent , Olivier de Viron, Clinton C P ,et al . Evidence of earthquake triggering by the solid Earth tides[J]. Earth and Planetary Science Letters, 2009,278:370-375. |
8 | Zhang Jing , Zhang Li . Short-term anomaly extracted from tidal deformation data before moderately strong earthquakes[J]. Earthquake,2003,23(3):71-78. |
8 | 张晶,张立 .中强震前形变固体潮汐资料短期信息的提取[J].地震,2003,23(3):71-78. |
9 | Zhang Jing , Niu Anfu , Gao Fuwang , et al . On the imminent and short-term characteristics of earthquake anomalies obtained from the digital deformation observations[J]. Earthquake,2003,23(1):71-76. |
9 | 张晶,牛安福,高福旺,等 .数字化形变观测提取的地震短临异常特征[J].地震, 2003,23(1):71-76. |
10 | Li Zhirong , Zhang Xiaodong . Relationship of tidal stress and large earthquakes[J]. Earthquake,2011,31(4):48-57. |
10 | 李智蓉,张晓东 .潮汐应力与大震关系研究[J].地震,2011,31(4):48-57. |
11 | Yu Xianchuan , Hu Dan . Theory and Application of Blind Source Separation[M]. Beijing: Science Press,2011. |
11 | 余先川,胡丹 .盲源分离理论与应用[M].北京:科学出版社,2011. |
12 | Li Xiliang . Application of High-order Statistics in Digital Data Analysis of Earthquake Precursors[D]. Hefei: University of Science and Technology of China,2009. |
12 | 李希亮 .高阶统计量在地震前兆数字化资料分析中的应用[D].合肥:中国科学技术大学, 2009. |
13 | Quan H , Shi X . A surface-simplex swarm evolution algorithm[J]. Wuhan University Journal of Natural Sciences, 2017, 22(1):38-50. |
14 | Wang Hong . Mathematical relationships and physical functions of Sspectral correlation[J]. Acta Electronica Sinica, 2015,43(4):810-815. |
14 | 王洪 .谱相关的数学关系与物理意义[J].电子学报, 2015,43(4):810-815. |
15 | Huang Zhitao . The Processing and Application of Cyclic Stationary Signals[M].Beijing: Science Press, 2006. |
15 | 黄知涛 .循环平稳信号处理及应用[M].北京:科学出版社,2006. |
16 | Zuo Yan , Ji Linwang , Wang Jingjing , et al . Digitized tilt measured tidal and theoretical solid tidal ratio analysis[J]. Journal of Disaster Prevention and Reduction, 2011, 27(3): 44-49. |
16 | 左艳,冀林旺,王晶晶,等 .数字化倾斜实测潮汐与理论固体潮汐的比分析[J].防灾减灾学报, 2011,27(3):44-49. |
17 | Fang Jun . Solid Tide [M]. Beijing: Science Press, 1985. |
17 | 方俊 .固体潮[M].北京:科学出版社,1985. |
/
〈 |
|
〉 |