Thermodynamic Modeling of Thioarsenic Species Distribution in High As Groundwater in Hetao Plain*

  • Aoran Pan ,
  • Huimei Shan ,
  • Sanxi Peng ,
  • Chaoran Zhao ,
  • Jian Huang ,
  • Zhiwei Yan
Expand
  • 1.College of Environmental Science and Engineering,Guilin University of Technology,Guilin 541004, China
    2.China University of Geosciences (Wuhan),Basin Hydrological Process and Wetland Ecological Restoration Academic Innovation Base,Wuhan 430074, China
    3.College of Earth Sciences and Engineering,Guilin University of Technology,Guilin 541004,China

First author:Pan Aoran(1993-),male,Suzhou County,Anhui Province,Master student. Research areas include groundwater pollution and remediation. E-mail:panaoran@163.com

Received date: 2018-09-15

  Revised date: 2018-10-08

  Online published: 2018-12-21

Supported by

Foundation item: Project supported by the National Natural Science Foundation of China "The effect of subgrid heterogeneity on scaling distribution and migration of thioarsenite/thioarsenate in sediments"(No.41502232);The Natural Science Foundation of Guangxi "Speciation,distribution and adsorption/desorption of thioarsenic in high arsenic groundwater"(No.2017GXNSFAA198096).

Copyright

地球科学进展 编辑部, 2018,

Abstract

Thioarsenic has gained increasing attention as a newly identified arsenic species. This paper selected Hetao Plain as the study area. Based on the field survey data and the thermodynamic reaction equation, the distribution characteristics of thioarsenic speciation in high-arsenic groundwater were simulated and analyzed. The results show that the major of arsenic speciation is arsenite, followed by thioarsenate and arsenate, and thethioarsenite concentrations are extremely low. Among them, monothioarsenate and trithioarsenate are the predominant thioarsnate species, with monothioarsenite being the dominant thioarsenite. In the buried depth of the range of 5~40 m, the content of various arsenic species does not change significantly with increasing depth. In the range of 40~80 m buried depth, the content of arsenite decreases with the increase of depth, and the content of thioarsenite increases with depth. Sulfide concentration has a significant effect on the distribution of arsenic species. When the concentration of sulfide is less than 5 μg/L, the various arsenic species do not change regularly with the increase of sulfide concentration. When the sulfide concentration is more than 5 μg/L, the content of arsenite and arsenate decreases with the increase of sulfide concentration, and the content of thioarsenate and thioarsenite tends to increase, and mutual transformation happens between different thioarsenite and thioarsenate species.

Cite this article

Aoran Pan , Huimei Shan , Sanxi Peng , Chaoran Zhao , Jian Huang , Zhiwei Yan . Thermodynamic Modeling of Thioarsenic Species Distribution in High As Groundwater in Hetao Plain*[J]. Advances in Earth Science, 2018 , 33(11) : 1169 -1180 . DOI: 10.11867/j.issn.1001-8166.2018.11.1169.

References

[1] Jia Yongfeng,Guo Huaming.Hot topics and trends in the study of high arsenic groundwater[J]. Advances in Earth Science,2013,28(1):51-61.
[1] [贾永锋,郭华明. 高砷地下水研究的热点及发展趋势[J].地球科学进展,2013, 28(1):51-61.]
[2] Prosun B,Alan H W,Kenneth G S,et al. Arsenic in the environment: Biology and chemistry[J]. Science of the Total Environment,2007,379(2):109-120.
[3] Guo Huaming,Yang Suzhen,Shen Zhaoli.High arsenic groundwater in the world: Overview and research perspectives[J]. Advances in Earth Science, 2007,22(11):1 109-1 117.
[3] [郭华明,杨素珍,沈照理.富砷地下水研究进展[J].地球科学进展,2007,22(11): 1 109-1 117.]
[4] Deng Yamin.Geochemical Processes of High Arsenic Groundwater System at Western Hetao Basin[D]. Beijing:University of Geosciences,2008.
[4] [邓娅敏. 河套盆地西部高砷地下水系统中的地球化学过程研究[D].北京:中国地质大学,2008.]
[5] Planer-Friedrich B,London J,McCleskey R B, et al. Thioarsenates in geothermal waters of yellowstone national park: Determination, preservation, and geochemical importance[J]. Environmental Science & Technology,2007,41(15):5 245-5 251.
[6] Nicole S,Keller A S,Bergur S.Determination of arsenic speciation in sulfidic waters by ion chroma to graphy hydride-generation atomic fluorescence spectrometry (IC-HG-AFS)[J]. Talanta,2014,128:466-472.
[7] Katrin H,William A M,Simon F,et al. Experimental evaluation of sampling, storage and analytical protocols for measuring arsenic speciation in sulphidic hot spring waters[J]. Microchemical Journal,2017,130:162-167.
[8] Wang Mindai,Guo Qinghai,Guo Wei, et al. Synthesis,identification and quantitative analysis of aqueous thioarsenates[J]. Chinese Journal of Analytical Chemistry,2016,44(11):1715-1720.
[8] [王敏黛,郭清海,郭伟,等.硫代砷化物的合成、鉴定和定量分析方法研究[J].分析化学,2016,44(11):1715-1720.]
[9] Zhuang Yaqin,Guo Qinghai,Liu Mingliang, et al. Geochemical simulation of thioarsenic speciation in high temperature,sulfide-rich hot springs:A case study in the rehai hydrothermal area,Tengchong,Yunnan[J]. Earth Science,2016,41(9):1 499-1 510.
[9] [庄亚芹,郭清海,刘明亮,等.高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟:以云南腾冲热海水热区为例[J].地球科学,2016,41(9):1 499-1 510.]
[10] Tong Jiarong,Shan Huimei,Liu Chongxuan, et al. Study on thioarsenic species: Analytical techniques and their environmental behavior[J]. Environmental Science & Technology,2018,41(3):156-162.
[10] [童佳荣,单慧媚,刘崇炫,等.硫代砷形态测试分析技术及环境行为特征[J]. 环境科学与技术,2018, 41(3):156-162.]
[11] Guo Huaming,Yang Suzhen,Tang Xiaohui, et al. Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin,Inner Mongolia[J]. Science of the Total Environment, 2007,393(1):131-144.
[12] Li Yuan,Guo Huaming,Hao Chunbo.Arsenic release from shallow aquifers of the Hetao Basin,Inner Mongolia: Evidence from bacterial community in aquifer sediments and groundwater[J]. Ecotoxicology, 2014,23(10):1 900-1 914.
[13] Guo Huaming, Zhang Yang, Jia Yongfeng, et al. Spatial and temporal evolutions of groundwater arsenic approximately along the flow path in the Hetao Basin,Inner Mongolia[J]. Chinese Science Bulletin,2013,58(25):3 070-3 079.
[14] Guo Huaming,Zhang Bo,Zhang Yang.Control of organic and iron colloids on arsenic partition and transport in high arsenic groundwaters in the Hetao Basin,Inner Mongolia[J]. Applied Geochemistry,2010,26(3):360-370.
[15] Parkhurst D L, Appelo C.User's Guide to PHREEQC(Version2): A Computer Program for Speciation,Batch-Reaction,One-Dimensional Transport,and Inverse Geochemical Calculations[R]. Water-Resours Investigations Report, Denver: U.S. Geological Survey, 1999.
[16] Helz G R,Tossell J A.Thermodynamic model for arsenic speciation in sulfidic waters: A novel use of ab initio computations[J]. Geochimica et Cosmochimica Acta,2008,72(18): 4 457-4 468.
[17] Zakaznova-Herzog V P,Seward T M. A spectrophotometric study of the formation and deprotonation of thioarsenite species in aqueous solution at 22℃[J]. Geochimica et Cosmochimica Acta, 2012,83:48-60.
[18] Thilo E,Hertzog K,Winkler A.Uber vorgange bei der bildung des arsen(V)-sulfids beim ansauern von tetrathioarsenatlosungen. Z[J]. Zeitschrift für Anorganische und Allgemeine Chemie,1970,373(2):111-121.
[19] Yang Suzhen,Guo Huaming,Tang Xiaohui, et al. Distribution of abnormal groundwater arsenic in Hetao Plain,Inner Mongolia[J]. Earth Science Frontiers,2018,15(1):242-249.
[19] [杨素珍,郭华明,唐小惠,等.内蒙古河套平原地下水砷异常分布规律研究[J].地学前缘,2018,15(1):242-249.]
[20] Guo Huaming,Zhang Bo,Li Yuan, et al. Concentrations and patterns of rare earth elements in high arsenic groundwaters from the Hetao Plain,Inner Mongolia[J]. Earth Science Frontiers,2010,17(6):59-66.
[20] [郭华明,张波,李媛,等.内蒙古河套平原高砷地下水中稀土元素含量及分异特征[J].地学前缘,2010,17(6):59-66.]
[21] Gao Cunrong.Discussion on arsenic pollution mechanism of groundwater in Hetao Plain[J]. The Chinese Journal of Geological Hazard and Control,1999,(2):26-33.
[21] [高存荣. 河套平原地下水砷污染机理的探讨[J].中国地质灾害与防治学报,1999, 10(2):26-33.]
[22] Gao Cunrong,Liu Wenbo,Feng Cuie.Distribution characteristics of saline groundwater and high-arsenic groundwater in the Hetao Plain, Inner Mongolia[J]. Acta Geoscientica Sinica,2014,35(2):139-148.
[22] [高存荣,刘文波,冯翠娥,等.内蒙古河套平原地下咸水与高砷水分布特征[J].地球学报,2014,35(2):139-148.]
Outlines

/