Orginal Article

Earthworm Calcite Granule —A New Proxy for Paleoenvironmental Reconstruction

  • Xiulan Zong ,
  • Yougui Song ,
  • Yue Li
Expand
  • 1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
    2.University of the Chinese Academy of Sciences, Beijing 100049, China

First author:Zong Xiulan(1995-),female,Yining City,Xinjiang Uygur Autonomous Region, Master student. Research areas include loess in Central Asia and climate change in the Quaternary. E-mail:zongxiulan@ieecas.cn

*Corresponding author:Song Yougui(1974-),male,Qiyang City,Hu'nan Province, Professor. Research areas include quaternary geology and environmental evolution. E-mail:syg@ieecas.cn

Received date: 2018-05-08

  Revised date: 2018-08-15

  Online published: 2018-10-24

Supported by

Foundation item:Project supported by the National Natural Science Foundation of China "Climate change since the last glaciation recorded by loess deposits in Central Asian arid area and its driving mechanism" (No.41572162);The International Partnership Program of Chinese Academy of Sciences "Loess in Central Asia and climate change in the Quaternary" (No.132B61KYS20160002).

Copyright

地球科学进展 编辑部, 2018,

Abstract

Earthworm calcite granules (ECG), generally produced in Morren's glands of the earthworm Lumbricus terrestris and Lumbricus rubellus, are commonly preserved in Quaternary soils and sediments well. These granules can not only provide radio-carbon dating (Carbon-14) with the efficacious materials, but accurately record a wealth of climatic and environmental information on temperature and precipitation. For instance, researchers from France reconstructed the paleotemperature and paleoprecipitation during the last glacial in west part of Europe by taking advantage of δ18O and δ13C signal contained in ECG. Additionally, scientists from Germany and France carried out radiocarbon dating of ECG from two different loess-paleosol sequences, and the results showed consistency with the dating results of other materials (such as charcoal, bone, plant calcified root cells, etc.). Therefore, this new bio-indicator has been confirmed as a proxy for paleoenvironmental and paleoclimatic reconstruction, hopefully becoming the golden key to understanding the paleoclimate change. This paper, based on the previous literatures, reviewed the present research status of ECG in paleoclimatology, mainly consisting of five aspects: (i) ECGs' production mechanism and their characteristics; (ii) The theoretical foundation of stable carbon and oxygen isotopes in terrestrial fossil earthworm calcite granules for paleoclimatic reconstruction; (iii) The pre-treatment of ECG samples; (iv) Current applications in chronology and paleoclimatology of earthworm calcite granules;(v) Major problems at present regarding paleoclimatic explanation and radiocarbon-14 dating of ECG. Finally, we proposed the future research and development direction in this field, which is expected to make a reference to the future researches.

Cite this article

Xiulan Zong , Yougui Song , Yue Li . Earthworm Calcite Granule —A New Proxy for Paleoenvironmental Reconstruction[J]. Advances in Earth Science, 2018 , 33(9) : 983 -993 . DOI: 10.11867/j.issn.1001-8166.2018.09.0983

References

[1] Edwards Clive A.Earthworm Ecology[M]. Boca Raton,FL:CRC Press, 2004.
[2] Feng Xiaoyi.Taxonomic characteristics of Chinese terrestrial earthworms[J]. Chinese Journal of Zoology, 1985, 20(1):44-47.
[2] [冯孝义. 中国陆栖蚯蚓各属的分类特征[J]. 动物学杂志, 1985, 20(1): 44-47.]
[3] Edwards C A, Lofty J R.Biology of Earthworms[M]. London, UK: Chapman and Hall, 1977.
[4] Versteegh Emma A A, Black Stuart, Canti Matthew G, et al. Earthworm-produced calcite granules: A new terrestrial palaeothermometer?[J]. Geochimica et Cosmochimica Acta, 2013, 123:351-357.
[5] Prud'Homme Charlotte, Antoine Pierre, Moine Olivier, et al. Earthworm calcite granules: A new tracker of millennial-timescale environmental changes in last glacial loess deposits[J]. Journal of Quaternary Science, 2015, 30(6):529-536.
[6] Prud'Homme Charlotte, Lécuyer Christophe, Antoine Pierre, et al. δ13C signal of earthworm calcite granules: A new proxy for palaeoprecipitation reconstructions during the last glacial in western Europe[J]. Quaternary Science Reviews, 2018, 179:158-166.
[7] Moine Olivier, Antoine Pierre, Hatté Christine, et al.The impact of last glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules[J]. Proceedings of the National Academy of Sciences, 2017, 114(24):6 209-6 214.
[8] Pustovoytov Konstantin, Terhorst Birgit.An isotopic study of a late Quaternary loess-paleosol sequence in SW Germany[J]. Revista Mexicana de Ciencias Geologicas, 2004, 21(1):88-93.
[9] Canti M G.Deposition and taphonomy of earthworm granules in relation to their interpretative potential in Quaternary stratigraphy[J]. Journal of Quaternary Science, 2007, 22(2):111-118.
[10] Br?m H.Was sind arion kinkelini wenz und a. Hochheimensis wenz[J]. Eclogae Geologicae Helvetiae, 1956, 49:593-598.
[11] Darwin Charles.The Formation of Vegetable Mould: Through the Action of Worms, with Observations on Their Habits[M]. D. Appleton: John Murray, 1896.
[12] Canti Matthew.Origin of calcium carbonate granules found in buried soils and Quaternary deposits[J]. Boreas, 1998, 27(2):275-288.
[13] Stein Julie K.Earthworm activity: A source of potential disturbance of archaeological sediments[J]. American Antiquity, 1983, 48:277-289.
[14] Becze-Deak J, Langohr Roger, Verrecchia E P.Small scale secondary CaCO3 accumulations in selected sections of the European loess belt. Morphological forms and potential for paleoenvironmental reconstruction[J]. Geoderma, 1997, 76(3/4):221-252.
[15] Canti Matthew G, Piearce Trevor G.Morphology and dynamics of calcium carbonate granules produced by different earthworm species: The 7th international symposium on earthworm ecology· cardiff· wales· 2002[J]. Pedobiologia, 2003, 47:511-521.
[16] Gago-Duport L,Briones M J I,Rodríguez J B, et al.Amorphous calcium carbonate biomineralization in the earthworm's calciferous gland: Pathways to the formation of crystalline phases[J]. Journal of Structural Biology, 2008, 162(3):422-435.
[17] Robertson James D.The function of the calciferous glands of earthworms[J]. Journal of Experimental Biology, 1936, 13(3):279-297.
[18] Briones M J I, López E, Méndez J, et al. Biological control over the formation and storage of amorphous calcium carbonate by earthworms[J]. Mineralogical Magazine, 2008, 72(1):227-231.
[19] Versteegh E A A, Black S, Hodson M E. Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate[J]. Applied Geochemistry, 2017, 78:351-356.
[20] Lee M R, Hodson M E, Langworthy G N.Crystallization of calcite from amorphous calcium carbonate: Earthworms show the way[J]. Mineralogical Magazine, 2008, 72(1):257-261.
[21] Brinza Loredana, Schofield Paul F, Hodson Mark E, et al.Combining μxanes and μxrd mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm lumbricus terrestris[J]. Journal of Synchrotron Radiation, 2014, 21(1):235-241.
[22] Prud'Homme Charlotte, Lécuyer Christophe, Antoine Pierre, et al. Palaeotemperature reconstruction during the last glacial from δ18O of earthworm calcite granules from Nussloch loess sequence, Germany[J]. Earth and Planetary Science Letters, 2016, 442: 13-20.
[23] Cerling Thure E, Quade Jay.Stable carbon and oxygen isotopes in soil carbonates[J]. Climate Change in Continental Isotopic Records, 1993,78: 217-231.
[24] Huang Wei, Liu Dianbing, Wang Luyao, et al.Research status and advance in carbon isotope (δ13C) variation from stalagmite[J]. Advances in Earth Science, 2016, 31(9):968-983.
[24] [黄伟, 刘殿兵, 王璐瑶, 等. 洞穴石笋δ13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9):968-983.]
[25] O'Leary Marion H.Carbon isotope fractionation in plants[J]. Phytochemistry, 1981, 20(4):553-567.
[26] Canti M G.Experiments on the origin of 13C in the calcium carbonate granules produced by the earthworm lumbricus terrestris[J]. Soil Biology and Biochemistry, 2009, 41(12):2 588-2 592.
[27] Canti M, Bronk-Ramsey C, Hua Q, et al.Chronometry of pedogenic and stratigraphic events from calcite produced by earthworms[J]. Quaternary Geochronology, 2015, 28:96-102.
[28] Wanamaker A D, Kreutz K J, Borns H W, et al.Experimental determination of salinity, temperature, growth, and metabolic effects on shell isotope chemistry of mytilus edulis collected from Maine and Greenland[J]. Paleoceanography, 2007, 22(2):237-254.
[29] Ullmann Clemens V, Wiechert Uwe, Korte Christoph.Oxygen isotope fluctuations in a modern north sea oyster (crassostrea gigas) compared with annual variations in seawater temperature: Implications for palaeoclimate studies[J]. Chemical Geology, 2010, 277(1):160-166.
[30] Versteegh E A A, Vonhof H B, Troelstra S R, et al. Seasonally resolved growth of freshwater bivalves determined by oxygen and carbon isotope shell chemistry[J]. Geochemistry Geophysics Geosystems, 2013, 11(8).DOI: 10.1029/2009GC002961.
[31] Kim S T, ONeil J R.Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]. Geochimica et Cosmochimica Acta, 1997, 61(16):3 461-3 475.
[32] Epstein Samuel, Buchsbaum Ralph, Lowenstam Heinz A, et al.Revised carbonate-water isotopic temperature scale[J]. Geological Society of America Bulletin, 1953, 64(1 953):1 315-1 326.
[33] Dansgaard Willi.Stable isotopes in precipitation[J]. Tellus, 1964, 16:436-468.
[34] Lacka Bozena,Lanczont Maria, Madeyska Teresa.Oxygen and carbon stable isotope composition of authigenic carbonates in loess sequences from the carpathian margin and podolia, as a palaeoclimatic record[J]. Quaternary International, 2009, 198(1):136-151.
[35] Zhang Tingjun.Influence of the seasonal snow cover on the ground thermal regime: An overview[J]. Reviews of Geophysics, 2005, 43(4). DOI:10.1029/2004RG000157.
[36] Zhang T, Osterkamp T E, Stamnes K.Effects of climate on the active layer and permafrost on the north slope of alaska, USA[J]. Permafrost and Periglacial Processes, 1997, 8(1):45-67.
[37] Satchell J.Lumbricidae[M]∥Burges A, Raw F, eds. Soil Biology. London: Academic Press,1967.
[38] Kohn M J.Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46):19 691-19 695.
[39] Diefendorf Aaron F, Hayes John M.Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13):5 738-5 743.
[40] Freeman K H, Mueller K E, Diefendorf A F, et al.Clarifying the influence of water availability and plant types on carbon isotope discrimination by C3 plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16):E59-E60.
[41] Rey K, Amiot R, Lecuyer C, et al.Late Miocene climatic and environmental variations in northern Greece inferred from stable isotope compositions (delta O-18, delta C-13) of equid teeth apatite[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2013, 388:48-57.DOI: 10.1016/j.palaeo.2013.07.021.
[42] Leuenberger M, Siegenthaler U, Langway C C.Carbon isotope composition of atmospheric CO2 during the last ice-age from an Antarctic ice core[J]. Nature, 1992, 357(6 378):488-490.
[43] Schmitt J, Schneider R, Elsig J, et al.Carbon isotope constraints on the deglacial CO2 rise from ice cores[J]. Science, 2012, 336(6 082):711-714.
[44] Hatté Christine, Antoine Pierre, Fontugne Michel, et al.δ13C of loess organic matter as a potential proxy for paleoprecipitation[J]. Quaternary Research, 2001, 55(1):33-38.
[45] Hatté C, Guiot J.Palaeoprecipitation reconstruction by inverse modelling using the isotopic signal of loess organic matter: Application to the Nussloch loess sequence (Rhine valley, Germany)[J]. Climate Dynamics, 2005, 25(2/3):315-327.
[46] Gocke M, Pustovoytov K, Kühn P, et al.Carbonate rhizoliths in loess and their implications for paleoenvironmental reconstruction revealed by isotopic composition:δ13C ,14C[J]. Chemical Geology, 2011, 283(3):251-260.
[47] Edwards C A, Bohlen P J.Biology and Ecology of Earthworms[M]. London, UK: Chapman and Hall, 1996.
[48] Curry James P.Factors affecting the abundance of earthworms in soils[M]∥Edwards C A, ed. Earthworm Ecology. Boca Raton,FL:CRC Press, 2004.
[49] Brown George G, Edwards Clive A, Brussaard Lijbert.How earthworms affect plant growth: Burrowing into the mechanisms[M]∥Edwards C A, ed. Earthworm Ecology. Boca Raton: CRC Press, 2004:13-49.
[50] Antoine Pierre, Rousseau Denis-Didier, Moine Olivier, et al.Rapid and cyclic aeolian deposition during the last glacial in European loess: A high-resolution record from Nussloch, Germany[J]. Quaternary Science Reviews, 2009, 28(25):2 955-2 973.
[51] Moine Olivier, Rousseau Denis-Didier, Jolly Dominique, et al.Paleoclimatic reconstruction using mutual climatic range on terrestrial mollusks[J]. Quaternary Research, 2002, 57(1):162-172.
[52] Xu Qin.Geographical distribution of terrestrial earthworms in China[J]. Journal of Beijing Institute of Education (Social Science Edition), 1996,(3):54-61.
[52] [徐芹. 中国陆栖蚯蚓地理分布概述[J]. 北京教育学院学报: 社会科学版, 1996, (3):54-61.]
[53] Xu Qin.A study on the classification of terrestrial earthworms in China[J]. Journal of Beijing Institute of Education (Social Science Edition), 1999, (3):52-57.
[53] [徐芹. 中国陆栖蚯蚓分类研究史探讨[J]. 北京教育学院学报: 社会科学版, 1999,(3): 52-57.]
Outlines

/