Orginal Article

Permafrost Change Under Natural Sites Along the Qinghai-Tibet Railway During the Years of 2006-2015

  • Zhizhong Sun ,
  • Wei Ma ,
  • Yanhu Mu ,
  • Yongzhi Liu ,
  • Shujuan Zhang ,
  • Honglei Wang
Expand
  • State Key Laboratory of Frozen Soils Engineering,Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences,Lanzhou 730000,China

First author:Sun Zhizhong(1974-), male, Qingyuan County, Liaoning Province, Associate professor. Research areas include environment and engineering in cold regions.E-mail:sun@lzb.ac.cn

Received date: 2017-12-11

  Revised date: 2018-02-06

  Online published: 2018-05-02

Supported by

Project supported by the National Natural Science Foundation of China “Observation and simulation study on water-heat process of thawed interlayer under the embankment in permafrost regions”(No.41571064) and “Thermo-mechanical influences and environmental effects of the Qinghai-Tibet Expressway’s building on the permafrost engineering corridor” (No.41630636).

Copyright

地球科学进展 编辑部, 2018,

Abstract

Permafrost changes under natural sites along the Qinghai-Tibet Railway were investigated based on the ground temperature monitored from the year of 2006 to 2015. Among these sites, mean permafrost table was 3.54 m, with a range of 0.88 to 9.14 m. Among the sites with decreasing permafrost table, mean decreasing amplitude of permafrost table was 0.51 m, with a range of 0.05 to 2.22 m; mean decreasing rate of permafrost table was 0.07 m/a, with a range of 0.01 to 0.25 m/a. Decreasing amplitude and decreasing rate of permafrost table in high temperature regions were 0.47 m and 0.06 m/a greater than those in low temperature regions, respectively. In general, ground temperatures at permafrost table and 15 m depth presented rising tendency. Mean rising amplitude of ground temperature at permafrost table was 0.16 ℃, with a range of 0.01 to 0.60 ℃; mean rising rate of ground temperature at permafrost table was 0.018 ℃/a, with a range of 0.001 to 0.067 ℃/a. Rising amplitude and rising rate of ground temperature at permafrost table in low temperature regions were 0.12 ℃ and 0.014 ℃/a greater than those in high temperature regions, respectively. Mean rising amplitude of ground temperature at 15 m depth was 0.10 ℃, with a range of 0.01 to 0.48 ℃; mean rising rate of ground temperature at 15 m depth was 0.011 ℃/a, with a range of 0.002 to 0.054 ℃/a. Rising amplitude and rising rate of ground temperature at 15 m depth in low temperature regions were 0.11 ℃ and 0.012 ℃/a greater than those in high temperature regions, respectively. Due to the effect of local factors, increasing of permafrost table and decreasing of ground temperature were observed under several sites.

Cite this article

Zhizhong Sun , Wei Ma , Yanhu Mu , Yongzhi Liu , Shujuan Zhang , Honglei Wang . Permafrost Change Under Natural Sites Along the Qinghai-Tibet Railway During the Years of 2006-2015[J]. Advances in Earth Science, 2018 , 33(3) : 248 -256 . DOI: 10.11867/j.issn.1001-8166.2018.03.0248

References

[1] Qin Dahe, Yao Tandong, Ding Yongjian, et al.Glossary of Cryosphere Science[M]. Beijing: China Meteorological Press, 2014.
[1] [秦大河,姚檀栋,丁永建,等.冰冻圈科学辞典[M].北京: 气象出版社,2014.]
[2] Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al.Geocryology in China[M]. Beijing: Science Press, 2000.
[2] [周幼吾,郭东信,邱国庆,等.中国冻土[M].北京: 科学出版社,2000.]
[3] Wu Q B, Zhang T J.Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research, 2008, 113: D13108.
[4] Cheng G D, Wu T H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research, 2007, 112: F02S03.
[5] Jin Huijun, Zhao Lin,Wang Shaoling,et al. Thermal regimes and degradation modes of permafrost along the Qinghai-Tibet Highway[J]. Science in China(Series D),2006,36(11):1 009-1 019.
[5] [金会军,赵林,王绍令,等. 青藏公路沿线冻土的地温特征及退化方式[J]. 中国科学:D辑,2006,36(11):1 009-1 019.]
[6] Wang S L, Jin H J, Li S X, et al. Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts[J]. Permafrost Periglacial Process, 2000, 11: 43-53.
[7] Wu Qingbai, Lu Zijian, Liu Yongzhi.Permafrost monitoring and its recent changes in Qinghai-Tibet Plateau[J]. Advances in Climate Change Research, 2005, 1(1): 26-28.
[7] [吴青柏,陆子建,刘永智.青藏高原多年冻土监测及近期变化[J]. 气候变化研究进展, 2005, 1(1): 26-28.]
[8] Wang Shaoling.Permafrost changes along the Qinghai-Xizang Highway during the last decades[J]. Arid Land Geography, 1993, 16(1): 1-7.
[8] [王绍令. 近数十年来青藏公路沿线多年冻土变化[J]. 干旱区地理, 1993, 16(1): 1-7.]
[9] Sun Zhizhong, Wu Guilong, Yun Hanbo, et al. Permafrost degradation under an embankment of the Qinghai-Tibet Railway in the southern limit of permafrost[J]. Journal of Glaciology and Geocryology, 2014,36(4):767-771.
[9] [孙志忠,武贵龙,贠汉伯,等. 多年冻土南界附近青藏铁路路基下的冻土退化[J]. 冰川冻土,2014,36(4):767-771.]
[10] Gao Baolin, Sun Zhizhong, Dong Tianchun, et al. Characteristics of thawed interlayer beneath embankment of the Qinghai-Tibet Railway in permafrost regions and its effect on embankment settlement deformation[J]. Journal of Glaciology and Geocryology, 2015,37(1):126-131.
[10] [高宝林,孙志忠,董添春,等. 青藏铁路路基下融化夹层特征及其对路基沉降变形的影响[J]. 冰川冻土,2015,37(1):126-131.]
[11] Wu Qingbai,Niu Fujun.Permafrost changes and engineering stability in Qinghai-Xizang Plateau[J]. Chinese Science Bulletin,2013,58(2):115-130.
[11] [吴青柏,牛富俊. 青藏高原多年冻土变化与工程稳定性[J]. 科学通报,2013,58(2):115-130.]
[12] Wang Genxu, Li Yuanshou, Wu Qingbai, et al. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau[J]. Science in China(Series D), 2006, 49(11): 1 156-1 169.
[12] [王根绪, 李元寿, 吴青柏, 等. 青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J]. 中国科学: D辑, 2006, 36: 743-754.]
[13] Wu Q B, Zhang T J.Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research, 2010, 115: D09107. DOI:10.1029/2009JD012974.
[14] Wu Q B, Liu Y Z.Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau[J]. Cold Regions Science Technology, 2004, 38(2/3): 85-92.
[15] Zhao L, Wu Q B, Marchenko S S, et al. Thermal state of permafrost and active layer in central Asia during the International Polar Year[J].Permafrost Periglacial Process,2010,21(2):198-207.
[16] Liu Minghao, Sun Zhizhong, Niu Fujun, et al. Variation characteristics of the permafrost along the Qinghai-Tibet Railway under the background of climate change[J]. Journal of Glaciology and Geocryology, 2014,36(5):1 122-1 130.
[16] [刘明浩,孙志忠,牛富俊,等. 气候变化背景下青藏铁路沿线多年冻土变化特征研究[J]. 冰川冻土,2014,36(5):1 122-1 130.]
[17] Wu Q B, Zhang T J, Liu Y Z.Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010[J]. The Cryosphere, 2012, 6(3): 607-612.
[18] Yu Qihao, Fan Kai, Qian Jin, et al. Key issues of highway construction in permafrost regions in China[J]. Science in China(Series E), 2014,44(4): 425-432.
[18] [俞祁浩, 樊凯, 钱进, 等. 我国多年冻土区高速公路修筑关键问题研究[J]. 中国科学:E辑,2014,44(4): 425-432.]
[19] Yang Jianping,Ding Yongjian,Fang Yiping,et al.Research frame of vulnerability and adaptation for the cryosphere and its changes[J]. Advances in Earth Science,2015,30(5): 517-529.
[19] [杨建平,丁永建,方一平,等. 冰冻圈及其变化的脆弱性与适应研究体系[J]. 地球科学进展,2015,30(5):517-529.]
[20] Ma W, Mu Y H, Wu Q B, et al. Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science Technology,2011,67(3):178-186.
[21] Wu Shaohong, Yin Yunhe, Zheng Du, et al. Climate changes in the Tibetan Plateau during the last three decades[J]. Acta Geographica Sinica, 2005,60(1):3-11.
[21] [吴绍洪,尹云鹤,郑度,等.青藏高原近30年气候变化趋势[J].地理学报,2005,60(1):3-11.]
[22] Cai Hancheng, Li Yong, Yang Yongpeng, et al. Variation of temperature and permafrost along Qinghai-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2017,35(7):1 434-1 444.
[22] [蔡汉成,李勇,杨永鹏,等.青藏铁路沿线多年冻土区气温和多年冻土变化特征[J]. 岩石力学与工程学报, 2017,35(7):1 434-1 444.]
[23] Zhu Zhaorong, Li Yong, Xue Chunxiao, et al. Changing tendency of precipitation in permafrost regions along Qinghai-Tibet Railway during last thirty years[J]. Journal of Glaciology and Geocryology, 2011,33(4):846-850.
[23] [朱兆荣,李勇,薛春晓,等. 1976—2010 年青藏铁路沿线多年冻土区降水变化特征[J]. 冰川冻土,2011,33(4):846-850.]
[24] Zhang Tingjun.Progress in global permafrost and climate change studies[J]. Quaternary Sciences, 2012,32(1):27-38.
[24] [张廷军. 全球多年冻土与气候变化研究进展[J].第四纪研究,2012,32(1):27-38.]
[25] Romanovsky V E,Smith S L,Christiansen H H.Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007-2009: A synthesis[J].Permafrost and Periglacial Progresses,2010,21(2):106-116.
[26] Chang Xiaoli, Jin Huijun, He Ruixia, et al. Review of permafrost monitoring in the northern Da Hinggan Mountains, Northeast China[J]. Journal of Glaciology and Geocryology, 2013,35(1):93-100.
[26] [常晓丽,金会军,何瑞霞,等. 大兴安岭北部多年冻土监测进展[J]. 冰川冻土,2013,35(1):93-100.]
[27] Yu Qihao, Bai Yang, Jin Huijun, et al. The study of the patchy permafrost along the Heihe-Bei’an Highway in Xiao Hinggan Mountains with ground penetrating radar[J]. Journal of Glaciology and Geocryology, 2008,30(3):461-468.
[27] [俞祁浩,白旸,金会军,等. 应用探地雷达研究中国小兴安岭地区黑河—北安公路沿线岛状多年冻土的分布及其变化[J]. 冰川冻土,2008,30(3):461-468.]
[28] Pang Qiangqiang, Zhao Lin, Li Shuxun.Influences of local factors on ground temperatures in permafrost regions along the Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology, 2011,33(2):349-356.
[28] [庞强强,赵林,李述训.局地因素对青藏公路沿线多年冻土区地温影响分析[J].冰川冻土,2011,33(2):349-356.]
[29] Ma Wei, Mu Yanhu, Li Guoyu, et al. Responses of embankment thermal regime to engineering activities and climate change along the Qinghai-Tibet Railway[J]. Science in China(Series D),2013,43(3):478-489.
[29] [马巍,穆彦虎,李国玉,等. 多年冻土区铁路路基热状况对工程扰动及气候变化的响应[J]. 中国科学:D辑,2013,43(3):478-489.]
[30] Wu Jichun, Sheng Yu, Wu Qingbai, et al. Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau[J]. Science in China (Series D),2009,39(11):1 570-1 578.
[30] [吴吉春,盛煜,吴青柏,等. 青藏高原多年冻土退化过程及方式[J]. 中国科学:D辑, 2009, 39(11): 1 570-1 578.]
Outlines

/