Orginal Article

A Review on Techniques and Applications of Biomarker Compound-specific Radiocarbon Analysis

  • Hailong Zhang ,
  • Shuqin Tao ,
  • Meng Yu ,
  • Meixun Zhao
Expand
  • 1.Key Laboratory of Marine Theory and Technology, Ministry of Education, Ocean University of China,Qingdao 266100, China
    2.Key Laboratory of Global Change And Marine-Atmospheric Chemistry of State Oceanic Administration, Third Institute of Oceanography, Xiamen 361005, China

First author:Zhang Hailong (1981-), male, Jimo City, Shandong Province, Ph.D student. Research areas include marine organic geochemistry.E-mail:zhanghailong@ouc.edu.cn

*Corresponding author:Tao Shuqin (1986-), female, Ningxiang City, Hu’nan Province, Assistant Professor. Research areas include marine organic carbon cycle and carbon isotope technology.E-mail:taoshuqin@tio.org.cn

Received date: 2017-07-10

  Revised date: 2017-10-02

  Online published: 2018-01-10

Supported by

Project supported by the Scientific Research Foundation of Third Institute of Oceanography, SOA “Source apportionment of molecular specific biomarkers from marine aerosols” (No.Haisanke2017013);The National Natural Science Foundation of China “The application of compound-specific biomarker 14C technique for reconstruction of the changes of sedimentary organic composition in the Yellow Sea during the Holocene” (No.41506087)

Copyright

地球科学进展 编辑部, 2017,

Abstract

Eglinton (1996) firstly performed the Compound-Specific Radiocarbon Analysis (CSRA) in marine sediments, providing a new approach to understanding the organic carbon source. The applications of CSRA technique were developed rapidly and widely used in oceanography, biogeochemistry and paleoclimatology. However, because of the extremely low amount and interference with complex substrates, mostly source-specific biomarkers were hard to be separated from environmental matrix samples. Therefore, how to harvest pure biomarkers, from complex natural sample matrixes, has been the limitation of CSRA technique, especially for ultra-small size CSRA. Recently, various preparative chromatography techniques have been carried out to improve the purity and recovery efficiency of the target compounds. This paper aimed to introduce the techniques and applications of CSRA for common source-specific biomarkers in the natural environment.

Cite this article

Hailong Zhang , Shuqin Tao , Meng Yu , Meixun Zhao . A Review on Techniques and Applications of Biomarker Compound-specific Radiocarbon Analysis[J]. Advances in Earth Science, 2017 , 32(11) : 1193 -1203 . DOI: 10.11867/j.issn.1001-8166.2017.11.1193

References

[1] Levin I, Kromer B, Schoch-Fischer H, et al.25 years of tropospheric 14C observations in central Europe[J]. Radiocarbon, 1985, 27(1): 1-19.
[2] Ardizzone D, Cailliet G M, Natanson L J, et al.Application of bomb radiocarbon chronologies to shortfin mako (Isurus oxyrinchus) age validation[J]. Environmental Biology of Fishes, 2006, 77(3): 355-366.
[3] Zhang Z, Zhao M, Yang X, et al.A hydrocarbon biomarker record for the last 40 kyr of plant input to Lake Heqing, southwestern China[J]. Organic Geochemistry, 2004, 35(5): 595-613.
[4] Wilson A T.Application of AMS 14C dating to ice core research[J]. Radiocarbon, 1995, 37(2): 637-641.
[5] Pearson A, Eglinton T I.The origin of n-alkanes in Santa Monica Basin surface sediment: A model based on compound-specific Δ14C and δ13C data[J]. Organic Geochemistry, 2000, 31(11): 1 103-1 116.
[6] Masiello C A, Druffel E R M. Black carbon in deep-sea sediments[J]. Science, 1998, 280(5 371): 1 911-1 913.
[7] Kusch S, Eglinton T I, Mix A C, et al.Timescales of lateral sediment transport in the Panama Basin as revealed by radiocarbon ages of alkenones, total organic carbon and foraminifera[J]. Earth and Planetary Science Letters, 2010, 290(3/4): 340-350.
[8] Hughen K, Lehman S, Southon J, et al.14C activity and global carbon cycle changes over the past 50,000 years[J]. Science, 2004, 303(5 655): 202-207.
[9] Dou Y, Yang S, Lim D I, et al.Provenance discrimination of last deglacial and Holocene sediments in the southwest of Cheju Island, East China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 422: 25-35.
[10] Salgueiro E, Naughton F, Voelker A H L,et al. Past circulation along the western Iberian margin: A time slice vision from the Last Glacial to the Holocene[J]. Quaternary Science Reviews, 2014, 106: 316-329.
[11] Huang Yuanhui, Ge Shulan, Shi Xuefa, et al.An age model reconstruction of Core BR07 from the northern continental slope of the Bering Sea[J]. Acta Oceanologica Sinica, 2013, 35(6): 67-74.
[11] [黄元辉, 葛淑兰, 石学法, 等. 白令海北部陆坡BR07孔年龄框架重建[J]. 海洋学报, 2013, 35(6): 67-74.]
[12] Kusch S, Rethemeyer J, Schefu β E, et al.Controls on the age of vascular plant biomarkers in Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 2010, 74(24): 7 031-7 047.
[13] Wang Yong, Shen Ji, Wu Jian, et al.Hard-water effect correction of lacustrine sediment ages using the relationship between 14C levels in lake waters and in the atmosphere: The case of Lake Qinghai[J]. Journal of Lake Sciences, 2007, 19(5): 504-508.
[13] [汪勇, 沈吉, 吴健, 等. 湖泊沉积物14C年龄硬水效应校正初探——以青海湖为例[J]. 湖泊科学, 2007, 19(5): 504-508.]
[14] Hou J, Huang Y, Brodsky C, et al.Radiocarbon dating of individual Lignin Phenols: A new approach for establishing chronology of late Quaternary lake sediments[J]. Analytical Chemistry, 2010, 82(17): 7 119-7 126.
[15] Vonk J E, Sánchez-García L, Semiletov I, et al.Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea[J]. Biogeosciences, 2010, 7(10): 3 153-3 166.
[16] Drenzek N J, Montluçon D B, Yunker M B, et al.Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular 13C and 14C measurements[J]. Marine Chemistry, 2007, 103(1/2): 146-162.
[17] Tao S, Eglinton T I, Montluçon D B, et al.Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance[J]. Earth and Planetary Science Letters, 2015, 414: 77-86.
[18] Tao S, Eglinton T I, Montluçon D B, et al.Diverse origins and pre-depositional histories of organic matter in contemporary Chinese marginal sea sediments[J]. Geochimica et Cosmochimica Acta, 2016, 191: 70-88.
[19] Matsumoto K, Uchida M, Kawamura K, et al.Radiocarbon variability of fatty acids in semi-urban aerosol samples[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 223(Suppl.C): 842-847.
[20] Eglinton T I, Eglinton G, Dupont L, et al.Composition, age, and provenance of organic matter in NW African dust over the Atlantic Ocean[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(8): 1-27.
[21] Hedges J I.Global biogeochemical cycles: Progress and problems[J]. Marine Chemistry, 1992, 39(1): 67-93.
[22] Villinski J C, Hayes J M, Brassell S C, et al.Sedimentary sterols as biogeochemical indicators in the Southern Ocean[J]. Organic Geochemistry, 2008, 39(5): 567-588.
[23] Galy V, Eglinton T.Protracted storage of biospheric carbon in the Ganges-Brahmaputra Basin[J]. Nature Geosci, 2011, 4(12): 843-847.
[24] Martin E E, Ingalls A E, Richey J E, et al. Age of riverine carbon suggests rapid export of terrestrial primary production in tropics [J]. Geophysical Research Letters, 2013, 40(21): 2013 GL057450.
[25] Meyers P A.Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5/6): 213-250.
[26] Eglinton T I, Aluwihare L I, Bauer J E, et al.Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating[J]. Analytical Chemistry, 1996, 68(5): 904-912.
[27] Eglinton T I, Bryan C, Benitez-Nelson, et al.Variability in radiocarbon ages of individual organic compounds from marine sediments[J]. Science, 1997, 277:796-799.
[28] Drenzek N J, Hughen K A, Montluçon D B, et al.A new look at old carbon in active margin sediments[J]. Geology, 2009, 37(3): 239-242.
[29] Gustafsson Ö, Van Dongen B E, Vonk J E,et al. Widespread release of old carbon across the Siberian Arctic echoed by its large rivers[J]. Biogeosciences, 2011, 8(6): 1 737-1 743.
[30] Feng X, Benitez-Nelson B C, Monrlucon D B,et al. 14C and 13C characteristics of higher plant biomarkers in Washington margin surface sediments[J]. Geochimica et Cosmochimca Acta, 2013, 105: 14-30.
[31] Feng X, Vonk J E, Dongen B E V,et al. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins[J]. Proceedings of the National Academy of Sciences, 2013, 110(35): 14 168-14 173.
[32] Uchikawa J, Brian N P, Jane E.Schoonmaker,et al. Direct application of compound-specific radiocarbon analysis of leaf waxes to establish lacustrine sediment chronology[J]. Journal of Paleolimnology, 2008, 39(1): 43-60.
[33] Matsumoto K, Kawamura K, Uchida M, et al.Compound specific radiocarbon and δ13C measurements of fatty acids in a continental aerosol sample[J]. Geophysical Research Letters, 2001, 28(24): 4 587-4 590.
[34] Xu L, Zheng M, Ding X, et al.Modern and fossil contributions to polycyclic aromatic hydrocarbons in PM2.5 from north Birmingham, Alabama in the southeastern U.S[J]. Environmental Science & Technology, 2012, 46(3): 1 422-1 429.
[35] Cowie B R, Greenberg B M, Slater G F.Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance 14C analysis of PLFA[J]. Environmental Science & Technology, 2010, 44(7): 2 322-2 327.
[36] Ruff M, Wacker L, Gäggeler H, et al.A gas ion source for radiocarbon measurements at 200 kV[J]. Radiocarbon, 2007, 49(2): 307-314.
[37] Shah S, Pearson A.Ultra-microscale (5-25 μg C) analysis of individual lipids by 14C AMS: Assessment and correction for sample processing blanks[J]. Radiocarbon, 2007, 49(1): 69-82.
[38] Ziolkowski L A, Druffel E R M. Quantification of extraneous carbon during compound specific radiocarbon analysis of black carbon[J]. Analytical Chemistry, 2009, 81(24): 10 156-10 161.
[39] Ingalls A E, Ellis E E, Santos G M, et al.HPLC purification of higher plant-dervied lignin phenols for compound specific radiocarbon analysis[J]. Analytical Chemistry, 2010, 82(21): 8 931-8 938.
[40] Santos R A L D, Prange M, Castañeda I S, et al. Glacial-interglacial variability in Atlantic meridional overturning circulation and thermocline adjustments in the tropical North Atlantic[J]. Earth and Planetary Science Letters, 2010, 300: 407-414.
[41] Mandalakis M, Gustafsson Ö.Optimization of a preparative capillary gas chromatography-mass spectrometry system for the isolation and harvesting of individual polycyclic aromatic hydrocarbons[J]. Journal of Chromatography A, 2003, 996(1/2): 163-172.
[42] Ball G I, Xu L, Mcnichol A P, et al. A two-dimensional, heart-cutting preparative gas chromatograph facilitates highly resolved single-compound isolations with utility towards compound-specific natural abundance radiocarbon (14C) analyses [J]. Journal of Chromatography A, 2012, 1 220: 122-131.
[43] Sciarrone D, Pantò S, Donato P, et al. Improving the productivity of a multidimensional chromatographic preparative system by collecting pure chemicals after each of three chromatographic dimensions [J]. Journal of Chromatography A, 2016, 1 475: 80-85.
[44] Müller P J, Kirst G, Ruhland G, et al.Calibration of the alkenone paleotemperature index based on core-tops from the eastern South Atlantic and the global ocean (60°N~60°S)[J]. Geochimica et Cosmochimica Acta, 1998, 62(10): 1 757-1 772.
[45] Xing L, Zhang H, Yuan Z, et al.Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research, 2011, 31(10): 1 106-1 115.
[46] Zhang Z, Zhao M, Eglinton G, et al.Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr[J]. Quaternary Science Reviews, 2006, 25(5/6): 575-594.
[47] Calvo E, Pelejero C, Logan G A.Pressurized liquid extraction of selected molecular biomarkers in deep sea sediments used as proxies in paleoceanography[J]. Journal of Chromatography A, 2003, 989(2): 197-205.
[48] Birkholz A, Smittenberg R H, Hajdas I, et al.Isolation and compound specific radiocarbon dating of terrigenous branched glycerol dialkyl glycerol tetraethers (brGDGTs)[J]. Organic Geochemistry, 2013, 60: 9-19.
[49] Ohkouchi N, Xu L, Reddy C M, et al.Radiocarbon dating of alkenones from marine sediments: I. Isolation protocol[J]. Radiocarbon, 2005, 47(3): 401-412.
[50] Wacker L, Lippold J, Molnár M, et al.Towards radiocarbon dating of single foraminifera with a gas ion source[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294(Suppl.C): 307-310.
[51] Wacker L, Fahrni S M, Hajdas I, et al.A versatile gas interface for routine radiocarbon analysis with a gas ion source[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294: 315-319.
[52] Smith A M, Hua Q, Williams A, et al.Developments in micro-sample 14C AMS at the ANTARES AMS facility[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7): 919-923.
[53] Mollenhauer G, Rethemeyer J.Compound-specific radiocarbon analysis—Analytical challenges and applications[J]. IOP Conference Series: Earth and Environmental Science, 2009, 5(1): 1-9.
[54] Zencak Z, Reddy C M, Teuten E L, et al.Evaluation of gas chromatographic isotope fractionation and process contamination by carbon in compound-specific radiocarbon analysis[J]. Analytical Chemistry, 2007, 79(5): 2 042-2 049.
[55] Buchholz B A, Freeman S P H T, Haack K W, et al. Tips and traps in the 14C bio-AMS preparation laboratory[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000, 172(1): 404-408.
[56] Ingalls A E, Shah S R, Hansman R L, et al.Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon[J]. Proceedings of the National Academy of Sciences, 2006, 103(17): 6 442-6 447.
[57] Coppola A I, Ziolkowski L A, Druffel E R M. Extraneous carbon assessments in radiocarbon measurements of black carbon in environmental matrices[J]. Radiocarbon, 2013, 55(3): 1 631-1 640.
[58] Tao Shuqin. The Composition,Isotopic Characteristics and Sources of Organic Matter in the Yellow River Suspended Particulates and Adjacent Bohai and Yellow Sea Suface Sediments[D]. Qingdao: Ocean University of China,2014.
[58] [陶舒琴. 黄河颗粒态及渤、黄海现代沉积有机质的组成和同位素分布特征及源项解析[D]. 青岛:中国海洋大学, 2014.]
[59] Santos G M, Southon J R, Griffin S, et al.Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility[J]. Nuclear Instruments and Methods in Physics Research B, 2007, 259: 293-302.
[60] Pearson A.Biogeochemical Applications of Compound-Specific Radiocarbon Analysis[R]. Cambridge: Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1999.
[61] Hayes J M, Freeman K H, Popp B N, et al.Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes[J]. Organic Geochemistry, 1990, 16(4/6): 1 115-1 128.
[62] Caimi R J, Brenna J T.Quantitative evaluation of carbon isotopic fractionation during reversed-phase high-performance liquid chromatography[J]. Journal of Chromatography A, 1997, 757(1): 307-310.
[63] Holmstrand H, Mandalakis M, Zencak Z, et al. Chlorine isotope fractionation of a semi-volatile organochlorine compound during preparative megabore-column capillary gas chromatography [J]. Journal of Chromatography A, 2006, 1 103(1): 133-138.
[64] Stuiver M, Polach H A.Radiocarbon-discussion reporting of 14C data[J]. Radiocarbon, 1977, 19(3): 355-363.
[65] Mcnichol A, Ertel J, Eglinton T I.The radiocarbon content of individual lignin-derived phenols: Technique and initial results[J]. Radiocarbon, 2000, 42(2): 219-227.
[66] Pearson A, Mcnichol A P, Benitez-Nelson B C, et al. Origins of lipid biomarkers in Santa Monica Basin surface sediment: A case study using compound-specific Δ14C analysis[J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 3 123-3 137.
[67] Corr L T, Berstan R, Evershed R P.Optimisation of derivatisation procedures for the determination of δ13C values of amino acids by gas chromatography/combustion/isotope ratio mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(23): 3 759-3 771.
[68] Shah S R, Mollenhauer G, Ohkouchi N, et al.Origins of archaeal tetraether lipids in sediments: Insights from radiocarbon analysis[J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4 577-4 594.
[69] Smittenberg R H, Hopmans E C, Schouten S, et al.Rapid isolation of biomarkers for compound specific radiocarbon dating using high-performance liquid chromatography and flow injection analysis-atmospheric pressure chemical ionisation mass spectrometry[J]. Journal of Chromatography A, 2002, 978(1): 129-140.
[70] Bour A L, Walker B D, Broek T A B, et al. Radiocarbon analysis of individual Amino Acids: Carbon blank quantification for a small-sample high-pressure liquid chromatography purification method[J]. Analytical Chemistry, 2016, 88(7): 3 521-3 528.
[71] Hopmans E C, Weijers J W H, Schefu B E,et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224(1/2): 107-116.
[72] Kim J H, Schouten S, Buscail R, et al.Origin and distribution of terrestrial organic matter in the NW Mediterranean (Gulf of Lions): Exploring the newly developed BIT index[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(11),doi:10.1029/2006GC001306.
[73] Xing L, Zhao M, Gao W, et al.Multiple proxy estimates of source and spatial variation in organic matter in surface sediments from the southern Yellow Sea[J]. Organic Geochemistry, 2014, 76: 72-81.
[74] Sinninghe Damsté J S, Ossebaar J, Abbas B, et al. Fluxes and distribution of tetraether lipids in an equatorial African lake: Constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings[J]. Geochimica et Cosmochimica Acta, 2009, 73(14): 4 232-4 249.
[75] Weijers J W H, Schefu B E, Kim J H, et al. Constraints on the sources of branched tetraether membrane lipids in distal marine sediments[J]. Organic Geochemistry, 2014, 72: 14-22.
[76] Zigah P K, Minor E C, Werne J P.Radiocarbon and stable-isotope geochemistry of organic and inorganic carbon in Lake Superior[J]. Global Biogeochemical Cycles, 2012, 26(1),doi:10.1029/2011GB004132.
Outlines

/