Orginal Article

Comparative Analysis of Risk Assessment of Landslides and Debris Flows of China in 2000 and 2010

  • Xilin Liu ,
  • Cheng Miao ,
  • Chunshan Tian ,
  • Jin’an Qiu
Expand
  • 1.School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
    2.Guangdong Province Key Laboratory of Urbanization and Geo-Simulation, Sun Yat-sen University, Guangzhou 510275, China

First author:Liu Xilin (1963-), male, Xinshao County, Hu’nan Province, Professor. Research areas indude risk assessment and prediction of geomorphic hazards.E-mail:liuxilin@mail.sysu.edu.cn

Received date: 2016-06-03

  Revised date: 2016-08-20

  Online published: 2016-09-20

Supported by

Project supported by the National Natural Science Foundation of China “Basic problems of disaster risk and acceptable risk—Taking debris flow as an example”(No.41171407)

Copyright

地球科学进展 编辑部, 2016,

Abstract

Landslides and debris flows occurr in China frequently and cause disastrous losses of life and property. The risk assessment of landslides and debris flows and their spatial variations were comparatively analyzed in this paper, which has great significance for disaster prevention. This article selected 1 km×1 km grid as the assessment unit and with support of GIS technique, analyzed landslide and debris-flow risk distribution and their spatial variations from 2000 to 2010. The research results indicated that the spatial distribution of risk classes in 2000 and 2010 was obviously discrepant. Overall, taking the Heihe-Tengchong population density line as the boundary, the west of the line is mainly low risk area; the east of the line is mainly high risk area. Compared with the risk of 2000, the risk values of 2010 increased, with the high risk area and low risk area enlarged, moderate risk area reduced. The moderate risk area is the most unstable and sensitive risk area, and its risk class variation is significant. However, China is not a region with the high risk of landslide and debris-flow hazard at present. In the following next 10 years, the risk of landslides and debris flows in China will continue to increase.

Cite this article

Xilin Liu , Cheng Miao , Chunshan Tian , Jin’an Qiu . Comparative Analysis of Risk Assessment of Landslides and Debris Flows of China in 2000 and 2010[J]. Advances in Earth Science, 2016 , 31(9) : 926 -936 . DOI: 10.11867/j.issn.1001-8166.2016.09.0926

References

[1] Shi Peijun.Natural Disasters in China[M]. Berlin: Springer-Verlag, 2016.
[2] Zhou Hongjian, Wang Dandan, Yuan Yi, et al.New advances in statistics of large-scale natural disasters damage and loss: Explanation of “Statistical System of Large-scale Natural Disasters”[J].Advances in Earth Science, 2015, 30(5): 530-538.
[2] [周洪建, 王丹丹, 袁艺, 等. 中国特别重大自然灾害损失统计的最新进展——《特别重大自然灾害损失统计制度》解析[J]. 地球科学进展, 2015, 30(5) : 530-538.]
[3] An Peijun, Li Li, Zhang Zhiqiang.A bibliometrical analysis of international landslide research[J]. Advances in Earth Science, 2011, 26(10): 1 116-1 124.
[3] [安培浚, 李栎, 张志强. 国际滑坡、泥石流研究文献计量分析[J]. 地球科学进展, 2011, 26(10) : 1 116-1 124.]
[4] Carrara F.Multivariate models for landslide hazard evaluation[J]. Mathematical Geology, 1983, 15(3): 403-426.
[5] Wilson R, Crouch E A C. Risk assessment and comparisons: An introduction[J]. Science, 1987, 236(4 799): 267-270.
[6] Ren Luchuan.Advance in risk analysis for regional natural disasters[J]. Advances in Earth Science, 1999, 14(3): 242-246.
[6] [任鲁川. 区域自然灾害风险分析研究进展[J]. 地球科学进展, 1999, 14(3): 242-246.]
[7] Liu Xilin.Gully-specific debris flow hazard assessment in China[J]. Chinese Geographical Science, 2003, 13(2): 112-118.
[8] China Earthquake Administration, Editorial Separtment of Journal of Natural Disasters. International Decade for Natural Disaster Reduction[M]. Beijing: Seismological Press, 1992.
[8] [国家地震局震害防御司, 自然灾害学报编辑部. 国际减轻自然灾害十年计划的实施[M]. 北京: 地震出版社, 1992.]
[9] Alexander E D.Natural Disasters[M]. London: UCL Press Limited, 1993.
[10] Guzzetti F, Reichenbach P, Cardinali M, et al.Probabilistic landslide hazard assessment at the basin scale[J]. Geomorphology, 2005, 72(1/4): 272-299.
[11] Cutter S L, Boruff B J, Shirley W L.Social vulnerability to environmental hazards[J]. Social Science Quarterly, 2003, 84(2): 243-261.
[12] Liu Xilin, Zhang Dan.Comparison of two empirical models for gully-specific debris flow hazard assessment in Xiaojiang valley of southwestern China[J]. Natural Hazards, 2004, 31(1): 157-175.
[13] Pourghasemi H R, Moradi H R, Aghda S M F. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances[J]. Natural Hazards, 2013, 69(1): 749-779.
[14] Zare M, Pourghasemi H R, Vafakhah M, et al.Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms[J]. Arabian Journal of Geosciences, 2013, 6(8): 2 873-2 888.
[15] Umar Z, Pradhan B, Ahmad A, et al.Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia[J]. Catena, 2014, 118: 124-135.
[16] Westen C J V, Castellanosa E, Kuriakose S L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview[J]. Engineering Geology, 2008, 102(3/4): 112-131.
[17] Kawagoe S, Kazama S, Sarukkalige R.Assessment of snowmelt triggered landslide hazard and risk in Japan[J]. Cold Regions Science and Technology, 2009, 58(3): 120-129.
[18] Gentile F, Bisantino T, Liuzzi G T.Debris-flow risk analysis in south Gargano watersheds (Southern-Italy)[J]. Natural Hazards, 2008, 44(1): 1-17.
[19] Zhang Chunshan, Zhang Yecheng, Zhang Lihai.Danger assessment of collapses, landslides and debris flows of geological hazards in China[J]. Journal of Geomechanics, 2004, 10(1): 27-32.
[19] [张春山, 张业成, 张立海. 中国崩塌、滑坡、泥石流灾害危险度评价[J]. 地质力学学报, 2004, 10(1): 27-32.]
[20] Shi Peijun, Du Juan, Ji Mengxin, et al.Urban risk assessment research of major natural disasters in China[J].Advances in Earth Science,2006,21(2):170-177.
[20] [史培军, 杜鹃, 冀萌欣, 等. 中国城市主要自然灾害风险评价研究[J]. 地球科学进展, 2006, 21(2): 170-177.]
[21] Blaikie P, Cannon T, Davis I, et al.At Risk: Natural Hazards, Peoples Vulnerability and Disasters[M]. London: Routledge, 1994.
[22] Shook G.An assessment of disaster risk and its management in Thailand[J]. Disasters, 1997, 21(1): 77-88.
[23] Shahabi H, Hashim M.Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment[J]. Scientific Reports, 2015, (5): 1-15.
[24] Oh H J, Pradhan B.Application of a neuro-fuzzy model to landslide susceptibility mapping for shallow landslides in a tropical hilly area[J]. Computers & Geosciences, 2011, 37(9): 1 264-1 276.
[25] Pradhan B, Lee S.Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland Malaysia[J]. Landslides, 2010, 7(1): 13-30.
[26] Guzzetti F, Carrara A, Cardinali M, et al.Landslide hazard evaluation: An aid to a sustainable development[J]. Geomorphology, 1999, 31(1/4): 181-216.
[27] Liu Xilin, Lei Junzhong.A method for assessing regional debris flow risk: An application in Zhaotong of Yunnan Province (SW China)[J]. Geomorphology, 2003, 52(3/4): 181-191.
[28] Liu Xilin, Yu Chengjun, Shang Zhihai.Risk mapping and spatial pattern of debris flow and landslide hazards in China[J]. Journal of Basic Science and Engineering, 2011, 19(5): 721-731.
[28] [刘希林, 余承君, 尚志海. 中国泥石流、滑坡灾害风险制图与空间格局研究[J]. 应用基础与工程科学学报, 2011, 19(5): 721-731.]
Outlines

/