Orginal Article

Characteristics of Pressure Response in Detrital Resveroir Compaction and Cementation

  • Liang Shi ,
  • Zhenkui Jin ,
  • Wei Yan ,
  • Kai Wei ,
  • Xiao’er Zhu
Expand
  • 1. Geoscience College, China University of Petroleum, Beijing 102249,China
    2. Research Institute of Exploration and Development, PeroChina Jidong Oilfield Company, Tangshan, 063004, China

Online published: 2015-02-20

Copyright

地球科学进展 编辑部, 2015,

Abstract

In order to raise up success rate of oil & gas exploration in mid-deep sedimentary basin with overpressures, characteristics of pressure response in reservoir compaction and cementation in Dongying formation in Northwestern Bozhong sag was studied, based on a lot of data from thin section, core analysis, grading analysis, SEM, etc. Strong evidence was obtained to testify that detrital reservoir compaction was inhibited by overpressures. In addition, it was not only proved that both carbonate and authigenic clay would be prompted by overpressures, but also indicated that this two types of cementation had disparate characteristics of pressure response in study area. The results showed that primary pore could be preserved about 2.0% as pore pressure was above hydrostatic pressure every 7 MPa in overpressures setting. With response to overpressure, cementations strength changed typically in scarp shape as depth increased: ①Abrupt slope stage from the less depth to 280 m outside of overpressures interface, where cementation strength swiftly increased, was characterized by weak cementation strength, whose cementation was dominated by authigenic clay with about 85%; ②Gentle slope stag from 280 m outside of overpressures interface to overpressures zone, where cementation strength slowly increased, was characterized by strongmiddle cementation strength,whose cementation was mainly occupied by carbonate cementation with over 75%. In normal pressure zone close to overpressures, influenced depth of carbonate cementation with response to overpressures was obviously shallower than that of authigenic clay minerals, the former was about 280 m and the latter was over 430 m. The correlation between residually primary pore and permeability was well in study area, whose coefficient could be near 0.77. It indicated that sandstone with a number of primary porosity could be effective reservoir in mid-deep strata. The research can be taken as theoretical basis for oil & gas exploration in mid-deep strata of sedimentary basin with overpressures.

Cite this article

Liang Shi , Zhenkui Jin , Wei Yan , Kai Wei , Xiao’er Zhu . Characteristics of Pressure Response in Detrital Resveroir Compaction and Cementation[J]. Advances in Earth Science, 2015 , 30(2) : 259 -267 . DOI: 10.11867/j.issn.1001-8166.2015.02.0259

References

[1] Du Xu,Zheng Hongyin,Jiao Xiuqiong.Abnormal pressure and hydrocarbon accumulation[J].Earth Science Frontier,1995,2(3/4): 137-148.
[1] [杜栩,郑洪印,焦秀琼.异常压力与油气分布[J].地学前缘,1995,2(3/4): 137-148.]
[2] Jin Zhenkui,Su Kui,Su Ni’na.Origin of Jurassic deep burial high-quality reservoirs in the central Junggar Basin[J].Acta Petrolei Sinica,2011,32(1): 25-31.
[2] [金振奎,苏奎,苏妮娜.准噶尔盆地腹部侏罗系深部优质储层成因[J].石油学报,2011,32(1): 25-31.]
[3] Stuart C A,Kozik H G.Geopressuring mechanism of smackover gas reservoirs jackson Dome area Mississippi[J].Journal of Petroleum Technology,1977,29(5): 579-585.
[4] Xiao Lihua,Gao Yuting,Tian Weizhi,et al.The retardation of mechanical compaction in clastic rocks by overpressure and the prediction model for porosity[J].Bulletin of Mineral,Petrology and Geochemistry,2011,30(5): 400-406.
[4] [肖丽华,高煜婷,田伟志,等.超压对碎屑岩机械压实作用的抑制与孔隙度预测[J].矿物岩石地球化学通报,2011,30(5): 400-406.]
[5] Sun Yunbao,Zhao Tiehu,Qin Ke.Numerical simulation of overpressure of shallow water flow in Baiyun Sag of the Northern South China Sea[J].Advances in Earth Science,2014,29(9): 1055-1064.
[5] [孙运宝,赵铁虎,秦柯.南海北部白云凹陷沉积压实作用对浅水流超压演化影响数值模拟[J].地球科学进展,2014,29(9): 1055-1064.]
[6] Ghaith A,Chen W,Ortoleva P.Oscillatory methane release from shale source rock[J].Earth-Science Reviews,1990,29(1): 241-248.
[7] Conybeare D M,Shaw H F.Fracturing,overpressure release and carbonate cementation in the Everest Complex,North Sea[J].Clay Minerals,2000,35(1): 135-149.
[8] Wang Xingxin,Zhou Shuxin.The effects of diagenesis of mudstone on the cementation of a sandstone reservoir[J].Acta Petrolei Sinica,1992,13(4): 20-30.
[8] [王行信,周书欣.泥岩成岩作用对砂岩储层胶结作用的影响[J].石油学报,1992,13(4): 20-30.]
[9] Li Zhong,Fei Weihong,Shou Jianfeng,et al.Overpressure and fluid flow in the Dongpu Depression,North China: Their constraints on diagenesis of reservoir sandstones[J].Acta Geological Sinica,2003,77(1): 126-134.
[9] [李忠,费卫红,寿建峰,等.华北东濮凹陷异常高压与流体活动及其对储集砂岩成岩作用的制约[J].地质学报,2003,77(1): 126-134.]
[10] Zhang Liqiang,Luo Xiaorong.Distribution and characteristics of carbonate cements in overpressure zone of Junggar Basin[J].Petroleum Geology & Experiment,2011,33(4): 388-391.
[10] [张立强,罗晓容.准噶尔盆地高压带碳酸盐胶结层的分布及特征[J].石油实验地质,2011,33(4): 388-391.]
[11] Yang Zhi,Zou Caineng,He Sheng,et al.Formation mechanism of carbonate cemented zones adjacent to the top overpressured surface in the central Junggar Basin,NW China[J].Science in China(Series D),2010,53(4): 529-540.
[11] [杨智,邹才能,何生,等.准噶尔盆地腹部超压顶面附近碳酸盐胶结带的成因机理[J].中国科学: D 辑,2010,40(4): 439-451.]
[12] Zhao Zhenyu,Gu Jiayu,Guo Yanru,et al.Mechanism of generating abnormal overpressure and its influences on super-low permeability reservoirs for upper Es4 member in Chexi depression[J].Journal of China University of Petroleum,2010,34(5): 12-17.
[12] [赵振宇,顾家裕,郭彦如,等.车西洼陷沙四上亚段异常高压形成机制及其对特低渗储层特性的影响[J].中国石油大学学报: 自然科学版,2010,34(5): 12-17.]
[13] Fu Qiang,Xia Qinglong,Zhou Xinhuai,et al.A genetic analysis of the reservior with relatively higher porosity and permeability in paleogene Shahejie Formation,Bozhong Sag: A case of Well QHD35-2-1[J].China Offshore Oil and Gas,2010,22(4): 221-224.
[13] [傅强,夏庆龙,周心怀,等.渤中凹陷古近系沙河街组相对高孔渗储层成因分析——以 QHD35-2-1 井为例[J].中国海上油气,2010,22(4): 221-224.]
[14] Li Jianping,Yang Bo,Zhou Xinhuai,et al.Analysis of sedimentary facies of Dongying Formation in the Bozhong Sag[J].Journal of Northeast Petroleum University,2012,36(4): 1-9.
[14] [李建平,杨波,周心怀,等.渤中凹陷东营组层序地层及其沉积相分析[J].东北石油大学学报,2012,36(4): 1-9.]
[15] Zhu Hongtao,Yang Xianghua,Zhou Xinhuai,et al.High resolution three-dimensional facies architecture delineation using sequence straitigraphy,seismic sedimentology: Example from Dongying Formation in BZ3-1 block of western slope of Bozhong Sag,Bohai Bay Basin[J].Earth Science—Journal of China University of Geoscience,2011,36(6): 1 073-1 084.
[15] [朱红涛,杨香华,周心怀,等.基于层序地层学和地震沉积学的高精度三维沉积体系: 以渤中凹陷西斜坡BZ3-1区块东营组为例[J].地球科学——中国地质大学学报,2011,36(6): 1 073-1 084.]
[16] Yang Bo,Xu Changgui,Niu Chengmin.Conditions for hydrocarbon reservoirs formation of lithologic trap in wall-corner-type steep slope belt: A case on the Paleogene Dongying Formation of BZ3 block in middle part of Shinan steep slope belt,Bohai Bay Basin[J].Journal of Palaeogeography,2012,13(4): 434-442.
[16] [杨波,徐长贵,牛成民.墙角型陡坡带岩性圈闭油气成藏条件研究——以渤海湾盆地石南陡坡带中段 BZ3区古近系东营组为例[J].古地理学报,2012,13(4): 434-442.]
[17] Jin Zhenkui,Liu Chunhui.Quantitative study on reservoir diagenesis in Northern Dagang Structural Belt,Huanghua Depression[J].Petroleum Exploration and Development,2008,35(5): 581-587.
[17] [金振奎,刘春慧.黄骅坳陷北大港构造带储集层成岩作用定量研究[J].石油勘探与开发,2008,35(5): 581-587.]
[18] Fu Jing,Wu Shenghe,Fu Jinhua,et al.Research on quantitative diagenetic facies of the Yanchang Formation in Longdong area,Ordos Basin[J].Earth Science Frontiers,2013,20(2): 86-97.
[18] [付晶,吴胜和,付金华,等.鄂尔多斯盆地陇东地区延长组储层定量成岩相研究[J].地学前缘,2013,20(2): 86-97.]
[19] Wu Shenghe.Reservoir Characterization & Modeling[M].Beijing: Petroleum Industry Press,2010: 215-217.
[19] [吴胜和. 储层表征与建模[M].北京:石油工业出版社,2010: 215-217.]
[20] Scherer M.Parameters influencing porosity in sandstones: A model for sandstone porosity prediction[J]. AAPG Bulletin,1987,71(5): 485-491.
[21] Terzaghi K,Peck R B.Soil Mechanics in Engineering Practice, 3Rd Ed[M]. New York:Wiley,1996:15-100.
[22] Shi Liang, Jin Zhenkui, Yan Wei, et al.Influence mechanisms of detrital dissolution and diagenesis stage in overpressures setting: An example from northwestern Bozhong sag[J]. Journal of China University of Mining & Technology, 2015, 44(2): 297-305.
[22] [石良, 金振奎, 闫伟, 等. 异常高压对储层溶蚀及成岩阶段的影响机理——以渤中凹陷西北次凹为例[J]. 中国矿业大学学报, 2015, 44(2): 297-305.]
[23] Zhang Jinliang,Zhang Penghui,Xie Jun,et al.Diagenesis of clastic reservoirs: Advances and prospects[J].Advances in Earth Science,2013,28(9):957-967.
[23] [张金亮,张鹏辉,谢俊,等.碎屑岩储集层成岩作用研究进展与展望[J].地球科学进展,2013,28(9):957-967.]
[24] Zhang Huolan,Pei Jianxiang,Zhang Yingzhao,et al.Overpressure reservoirs in the mid-deep Huangliu formation of the Dongfang area,Yinggehai Basin,South China Sea[J].Petroleum Exploration and Development,2013,40(3): 284-293.
[24] [张伙兰,裴健翔,张迎朝,等.莺歌海盆地东方区中深层黄流组超压储集层特征[J].石油勘探与开发,2013,40(3): 284-293.]
[25] Hu Zuowei,Li Yun,Huang Sijing,et al.Reviews of the destruction and preservation of primary porosity in the sandstone reservoirs[J].Advances in Earth Science,2012,27(1): 14-25.
[25] [胡作维,李云,黄思静,等.砂岩储层中原生孔隙的破坏与保存机制研究进展[J].地球科学进展,2012,27(1): 14-25.]
[26] Zhu Xiaomin,Zhong Dakang,Zhang Qin,et al.Reservoir Characteristic and Evaluation in the Palaeogene in Jiyang Depression[M].Beijing: Science Press,2008: 161-168.
[26] [朱筱敏,钟大康,张琴,等.济阳坳陷古近系碎屑岩储层特征和评价[M].北京:科学出版社,2008: 161-168.]
[27] Su Ni’na,Jin Zhenkui,Song Fan.Clastic reservoir characteristics of Shahejie Formation in Beidagang structural belt of Huanghua depression and its controlling factors[J].Journal of China University of Petroleum (Edition of Natural Science),2009,33(6): 27-31.
[27] [苏妮娜,金振奎,宋璠.黄骅坳陷北大港构造带沙河街组碎屑岩储层特征及其控制因素[J].中国石油大学学报: 自然科学版,2009,33(6): 27-31.]
Outlines

/