Orginal Article

Amino Sugars and Their Indicating Role in the Cycling of Organic Matter in Marine Environment

  • Chengzhe Ren ,
  • Huamao Yuan ,
  • Jinming Song ,
  • Xuegang Li ,
  • Ning Li ,
  • Liqin Duan
Expand
  • 1.Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Function Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

First author:Ren Chengzhe (1991-), male, Baicheng County, Jilin Province, Ph.D studernt. Research areas include marine biogeochemistry.E-mail:renchengzhe@outlook.com

*Corresponding author:Yuan Huamao(1975-), male, Nantong County, Jiangsu Province, Professor. Research areas include marine biogeochemistry.E-mail:yuanhuamao@qdio.ac.cn

Received date: 2017-03-03

  Revised date: 2017-07-17

  Online published: 2017-09-20

Supported by

*Project supported by the National Natural Science Foundation of China and Shandong Province Joint Fund “Biogeochemical mechanism of marine ecological environment changes” (No.U1406403);The National Basic Research Program of China “Transportation and transformation of nutrients and theirenvironmental effects in the gulf”(No.2015CB452902)

Copyright

地球科学进展 编辑部, 2017,

Abstract

As a kind of marine organic matter with important geochemical characteristics, amino sugars can effectively reflect the source, diagenetic state and mineralization process of organic matter by their concentration and composition in marine environment. This article systematically concluded the research progresses of amino sugars from the aspects of their source, composition and distribution characteristics in marine environment, and the role as a biomarker indicating source and diagenetic state of marine organic matter. The result showed that the macromolecular morphology, the oxygen and nutrient level and the sedimentary environment could affect the reactivity of amino sugars. The higher ratios of glucosamine to galactosamine (GlcN/GalN) and the Total Hydrolysable Amino Acids to Total Hydrolysable Amino Sugars (THAA/THAS) can reflect the fresh planktonic organic matter source and the lower ratios can reflect the conversion from planktonic to bacterial organic matter. The carbon and nitrogen normalized yield of total hydrolysable amino sugars, however, could give contradictory results depending on the relative contribution of the source and degradation degree of organic matter. Muramic acid is suitable to estimate the contribution of relatively fresh bacteria organic matter to particulate and sediment organic matter, but it is not suitable for applying in the dissolved organic matter because of its very low concentration leading from its rapid recycle. It is critical to enhance the research on the contribution of different microorganisms to amino sugars and differentiate the influence of organic matter source and degradation on amino sugars in marine environment. The research on the conversion and fate of amino sugars in marine environment is also needed.

Cite this article

Chengzhe Ren , Huamao Yuan , Jinming Song , Xuegang Li , Ning Li , Liqin Duan . Amino Sugars and Their Indicating Role in the Cycling of Organic Matter in Marine Environment[J]. Advances in Earth Science, 2017 , 32(9) : 959 -971 . DOI: 10.11867/j.issn.1001-8166.2017.09.0959

References

[1] Harvey H.Sources and cycling of organic matter in the marine water column[M]∥Volkman J K, ed. Marine Organic Matter: Biomarkers, Isotopes and DNA. Berlin: Springer, 2006: 1-25.
[2] Chester R, Jickells T.Marine Geochemistry[M]. London: Wiley-Blackwell, 2012: 273-289.
[3] Zhao Bin, Yao Peng, Yu Zhigang.The effect of organic carbon-iron oxide association on the preservation of sedimentary organic carbon in marine environments[J]. Advances in Earth Science, 2016, 31(11): 1 151-1 158.
[3] [赵彬,姚鹏,于志刚.有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J].地球科学进展, 2016, 31(11): 1 151-1 158.]
[4] Bourgoin L H, Tremblay L.Bacterial reworking of terrigenous and marine organic matter in estuarine water columns and sediments[J].Geochimica et Cosmochimica Acta, 2010, 74(19): 5 593-5 609.
[5] Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al.Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments: An overview[J]. Advances in Earth Science, 2011, 26(4): 355-364.
[5] [朱茂旭,史晓宁,杨桂朋,等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J].地球科学进展,2011, 26(4): 355-364.]
[6] Hedges J I, Keil R G, Benner R.What happens to terrestrial organic matter in the ocean?[J].Organic Geochemistry, 1997, 27(5): 195-212.
[7] Davis J, Benner R.Seasonal trends in the abundance, composition and bioavailability of particulate and dissolved organic matter in the Chukchi/Beaufort Seas and western Canada Basin[J].Deep-Sea Research II: Topical Studies in Oceanography, 2005, 52(24/26): 3 396-3 410.
[8] Benner R, Kaiser K.Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter[J].Limnology and Oceanography, 2003, 48(1): 118-128.
[9] Fernandes L, D’Souza F, Matondkar S G P,et al. Amino sugars in suspended particulate matter from the Bay of Bengal during the summer monsoon of 2001[J]. Journal of Earth System Science, 2006, 115(3): 363-370.
[10] Khodse V B, Bhosle N B.Distribution, origin and transformation of amino sugars and bacterial contriution to estuarine particulate organic matter[J].Continental Shelf Research, 2013, 68: 33-42.
[11] Gupta L P, Kawahata H.Amino acid and hexosamine composition and flux of sinking particulate matter in the equatorial Pacific at 175°E longitude[J].Deep Sea Research I: Oceanographic Research Papers, 2000, 47(10): 1 937-1 960.
[12] Ittekkot V, Deuser W G, Degens E T.Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean: Sargasso Sea[J].Deep Sea Research, 1984, 31:1 057-1 069.
[13] Ittekkot V, Degens E T, Honjo S.Seasonality in the fluxesof sugars, amino acids, and amino sugars to the deep ocean: Panama Basin[J]. Deep Sea Research,1984, 31(9): 1 071-1 083.
[14] Lahajnar N, Wiesner M G, Gaye B.Fluxes of amino acids and hexosamines to the deep South China Sea[J].Deep-Sea Research I: Oceanographic Research Papers, 2007, 54(12): 2 120-2 144.
[15] Hashimoto S, Maita Y.Fluxes of amino acid and hexosamine in sinking particles in subarctic and arctic coastal region[J]. Journal of Oceanography, 2003, 59(5): 731-738.
[16] Dauwe B, Middelburg J J.Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments[J].Limnology and Oceanography, 1998, 43(5): 782-798.
[17] Lomstein B A, Niggemann J, Jørgensen B B,et al.Accumulation of prokaryotic remains during organic matter diagenesis in surface sediments off Peru[J]. Limnology and Oceanography, 2009, 54(4): 1 139-1 151.
[18] Gupta L P, Kawahata H.Amino acid and hexosamine composition and flux of sinking particulate matter in the equatorial Pacific at 175°E longitude[J]. Deep-Sea Research I, 2000, 47(10):1 937-1 960.
[19] Niggemann J, Schubert C J.Sources and fate of amino sugars in coastal Peruvian sediments[J].Geochimica et Cosmochimica Acta, 2006, 70(9):2 229-2 237.
[20] Liebezeit G.Amino sugars in Bransfield Strait and Weddell Sea sediments[J].Senckenberiana Maritime, 1993, 23(1): 29-35.
[21] Jennerjahn T C, Ittekkot V.Changes in organic matter from surface waters to continental slope sediments off the Sao Francisco River, eastern Brazil[J].Marine Geology,1999, 161(2/4): 129-140.
[22] Brock T D, Madigan M T, Martinko J M, et al.Biology of Microorganisms[M]. New Jersey:Prentice Hall, 1994.
[23] Messner P.Bacterial Glycoproteins[J].Glycoconjugate Journal, 1997, 14(1):3-11.
[24] Trefzer A, Salas J A, Bechthold A.Genes and enzymes involved in deoxysugar biosynthesis in bacteria[J].Nature Production Report, 1999, 16(3): 283-299.
[25] Schleifer K H, Kandler O.Peptidoglycan types of bacterial cell walls and their taxonomic implications[J].Bacteriological Reviews, 1972, 36(4): 407-477.
[26] Niggemann J, Schubert C J.Sources and fate of amino sugars in coastal Peruvian sediment[J].Geochimica et Cosmochimica Acta, 2006, 70(9): 2 229-2 237.
[27] Kaiser K, Benner R.Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen[J].Limnology and Oceanography, 2008, 53(3): 99-112.
[28] Moriarty D J W. Improved method using muramic acid to estimate biomass of bacteria in sediments[J].Oecologia, 1977, 26(4): 317-323.
[29] Carstens D, Schubert C J.Amino acid and amino sugar transformation during sedimentation in lacustrine system[J]. Organic Geochemistry, 2012, 50(3): 26-35.
[30] Jeuniaux C.Chitine et Chitinolyse:Un Chapitre de Biologie Moléculaire[M]. Paris: Masson,1963: 181.
[31] Jeuniaux C.Chitine et phylogénie: Application d’une méthode enzymatique de dosage de la chitine[J].Bulletin des Societes Chimiques Belges, 1965, 47(12): 2 267-2 278.
[32] Jeuniaux C.La chitine dans le règne animal[J].Bulletin de la Société Zoologique de France,1982, 107(3): 363-386.
[33] Bussers J C, Jeuniaux C.Recherche de la chitine dans les productions métaplasmatiques de quelques ciliés[J].Protistologica, 1974, 10(4): 43-46.
[34] Rosati G, Verni F, Ricci N.The cyst of Oxytricha bifaria (Ciliata Hypotrichida). III. Cytochemical investigation[J]. Protistologica, 1984, 20: 197-204.
[35] Mulisch M.Chitin in protistan organisms[J].European Journal of Protistology,1993, 29(1): 1-18.
[36] Muzzarelli R A A. Chitin[M]. New York: Pergamon Press, 1977: 309.
[37] Kapaun E, Reisser W.A chitin-like glycan in the cell wall of a Chlorella sp. (Chlorococcales, Chlorophyceae)[J]. Planta, 1995, 197(4): 577-582.
[38] Herth W, Schnepf E.Chitin-fibril formation in algae[M]∥Brown R M,ed. Cellulose and Other Natural Polymer Systems. New York: Plenum Press, 1982: 185-206.
[39] Herth W, Kuppel A, Schnepf E.Chitinous fibrils in the lorica of the flagellate chrysophyte Poterioochromonas stipitata (syn. Ochromonas malhamensis)[J]. Journal of Cell Biology, 1977, 73(2): 311-321.
[40] Henry M C.Chitin production by arthropods in the Hydrosphere[J].Hydrobiologia, 2002, 470(1/3): 63-96.
[41] Kirchman D L, White J.Hydrolysis and mineralization of chitin in the Delaware estuary[J].Aquatic Microbial Ecology,1999, 18(2): 187-196.
[42] Kawasaki N, Benner R.Bacterial release of dissolved organic matter during cell growth and decline: Molecular origin and composition[J].Limnology and Oceanography, 2006, 51(5):2 170-2 180.
[43] Giroldo D, Vieira A A H. An extracellular sulfated fucose-rich polysaccharide produced by a tropical strain of Cryptomonas obovata (Cryptophyceae)[J].Journal of Applied Phycology, 2002, 14(3): 185-191.
[44] Kudo F, Kawabe K, Kuriki H,et al.A new family of glucose-1-phosphate/glucosamine-1-phosphate nucleotidylyltransferase in the biosynthetic pathways for antibiotics[J].Journal of American Chemical Society, 2005, 127(6): 1 711-1 718.
[45] Nagata T, Meon B, Kirchman D L.Microbial degradation of peptidoglycan in seawater[J].Limnology and Oceanography, 2003, 48(2): 745-754.
[46] Jørgensen N O G, Tepanaukas R S, Pedrson A G U,et al. Occurrence and degradation of peptidoglycan in aquatic environments[J]. FEMS Microbiology Ecology, 2003, 46(3): 269-280.
[47] Baas M, Briggs D E G, van Heemst,et al. Selective preservation of chitin during the decay of shrimp[J]. Geochimica et Cosmochimica Acta,1995, 59(5): 945-951.
[48] Gooday G W.The ecology of chitin degradation[M]∥Marshall K C, ed. Advances in Microbial Ecology. London: Plenum Press, 1990: 387-440.
[49] Kirchman D L.The uptake of inorganic nutrients by heterotrophic bacteria[J].Microbial Ecology, 1994, 28(2): 255-271
[50] Ding Xueli, He Hongbo, Zhang Bin, et al.Plant-N incorporation into microbial amino sugars as affected by inorganic N addition: A microcosm study of 15N-labeled maize residue decomposition[J].Soil Biology and Biochemistry, 2011, 43(9): 1 968-1 974.
[51] Ogawa H, Amagai Y, Koike I,et al.Production of refractory dissolved organic matter by bacteria[J]. Science, 2015, 292(5 518): 917-920.
[52] Dauwe B, Middelburg J J.Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments[J]. Limnology and Oceanography, 1998, 43(5): 782-798.
[53] Mopper K, Degens E T.Aspects of Biogeochemistry of Carbohydrates and Proteins in Aquatic Environments[R]. Woods Hole Oceanographic Institute Technical Report, 1972.
[54] Mayzaud P, Martin J L M. Some aspects of the biochemical and mineral composition of marine plankton[J].Journal of Experimental Marine Biology, 1975, 17(3): 297-310.
[55] Moriarty D J W. Method for estimating biomass of bacteria in aquatic sediments and its application to trophic studies[J].Oecologia, 1975, 20(3): 219-229.
[56] Bourgoin L H, Tremblay L.Bacterial reworking of terrigenous and marine organic matter in estuarine water columns and sediments[J]. Geochimica et Cosmochimica Acta, 2010, 74(19): 5 593-5 609.
[57] Tremblay L, Benner R.Organic matter diagenesis and bacterial contributions to detrital carbon and nitrogen in the Amazon River system[J].Limnology and Oceanography, 2009, 54(3): 681-691.
[58] Moriarty D J W, Hayward A C. Ultrastructure of bacteria and the proportion of Gram-negative bacteria in marine sediments[J].Microbial Ecology, 1982, 8(1):1-14.
[59] Giovannoni S, Rappe M.Evolution, diversity, and molecular ecology of marine prokaryotes[M]∥Kirchman D L,ed. Microbal Ecology of the Oceans. Wiley, 2000: 47-84.
[60] Kawasaki N, Sohrin R, Ogawa H,et al.Bacterial carbon content and the living and detrital bacterial contributions to suspended particulate organic carbon in the North Pacific Ocean[J]. Aquatic Microbial Ecology, 2011, 62(C6): 165-176.
[61] Lee S, Fuhrman J A.Relationship between biovolume and biomass of naturally derived marine bacterioplankton[J].Applied and Environmental Microbiology, 1987, 53(6):1 298-1 303.
Outlines

/