Orginal Article

Progress on Sedimentation of Subaqueous Volcanic Eruption

  • Xin Jiao ,
  • Yiqun Liu ,
  • Wan Yang ,
  • Dingwu Zhou
Expand
  • 1.State Key Laboratory of Continental Dynamics,Department of Geology,Northwest University,Xi’an 710069,China
    2.Geology and Geophysics Program,Missouri University of Science and Technology,Rolla 65401,MO,USA

First author:Jiao Xin(1985-), male, Baoji City, Shaanxi Province, Ph.D student. Research areas include volcanic-hydrothermal sedimentation.E-mail:jxin807@163.com.

*Corresponding author:Liu Yiqun(1951-), female, Zibo City, Shandong Province, Professor. Research areas include petrology.E-mail:liu-yiqun@263.net

Received date: 2017-02-13

  Revised date: 2017-06-25

  Online published: 2017-09-20

Supported by

Project supported by the National Natural Science Foundation of China “Research on laminated microbial dolomite in Permian-reference with the Eastern Junggar Basin, Xinjiang” (No.41572086) and “Mantle-originated hydrothermal exhalative deposition in Permian and its mechanism, Santanghu area, NE Xinjiang”(No.41272116)

Copyright

地球科学进展 编辑部, 2017,

Abstract

In recent years, more and more originally regarded as black oil and gas-bearing shales have been found, whose formation has close relationship with subaqueous volcanic activities, with much more fundamental research work on tight oil in China. However, our study of sedimentations of subaqueous eruption has not been well studied since their sediments are very tiny, not easy to be sampled, and extremely difficult to differentiate from mud-size clastic sediments. This paper reviewed the advances of the processes of fragmentation, transportation, and deposition of sediments originated by subaqueous eruption, on the basis of publications and research experience on some special intervals in interlaminated shales and dolostones in Permian Lucaogou Formation in Santanghu Basin. Three main features and their implications were documented. ① Minerals in those intervals were angular with a low component maturity, and some of them were shard-like, suggesting volcanic-eruptive origin. ② Intervals were laminated and thin bedded. The former had a sharp erosional base, and was internal normal graded, and showed crude orientation of elongate grains parallel to bedding plane, suggesting deposition of lateral tractive current; the latter showed messy accumulation without internal structure, suggesting deposition of dense granular flow. ③ Intervals were localized and repetitive in stratigraphy, indicating origin from episodic-pulsating volcanic activities. We preliminarily interpreted those intervals as sedimentations of subaqueous volcanic-hydrothermal activities (phreatomagmatic/hydrovolcanic deposition). Then, the relationship of intraclasts, extraclasts, and deep-derived clasts, the difference of sedimentary rocks formed by subaqueous between subaerial eruptions, and the terminology of these eruptive rocks were discussed. Finally, macro to micro scale observation, micro-texture of minerals, attaching importance on hydrothermal exhalative sedimentations, and multidisciplinary studies were suggested for future research on those rocks.

Cite this article

Xin Jiao , Yiqun Liu , Wan Yang , Dingwu Zhou . Progress on Sedimentation of Subaqueous Volcanic Eruption[J]. Advances in Earth Science, 2017 , 32(9) : 926 -936 . DOI: 10.11867/j.issn.1001-8166.2017.09.0926

References

[1] Wohletz K H, Sheridan M F.Hydrovolcanic explosions II. Evolution of basaltic tuff rings and tuff cones[J]. American Journal of Science, 1983, 283(5): 384-413.
[2] Fisher R V.Submarine volcaniclastic rocks[J]. Geological Society, London (Special Publications), 1984, 16(1): 5-27.
[3] Kokelaar B P, Busby C J.Subaqueous explosive eruption and welding of pyroclastic deposits[J]. Science, 1992, 257(5 067): 196-201.
[4] White J D L. Subaqueous eruption-fed density currents and their deposits[J]. Precambrian Research, 2000, 101(2/4): 87-109.
[5] Fiske S R, Naka J, Iizasa K, et al.Submarine silicic caldera at the front of the Izu-Bonin arc, Japan: Voluminous seafloor eruptions of rhyolite pumice[J]. GSA Bulletin, 2001, 113(7): 813-824.
[6] Rinaldi M, Campos V M.The submarine eruption of the Bombarda volcano, Milos Island, Cyclades, Greece[J]. Bulletin of Volcanology, 2003, 65(4): 282-293.
[7] Roberge J, White V R, Wallace J P.Volatiles in submarine basaltic glasses from the Ontong Java Plateau (ODP Leg 192): Implications for magmatic processes and source region compositions[J]. Geological Society, London (Special Publications), 2004, 229(1): 239-257.
[8] Martin U, Nemeth K.Eruptive and depositional history of a Pliocene tuff ring that developed in a fluvio-lacustrine basin: Kissomlyo volcano (western Hungary)[J]. Journal of Volcanology and Geothermal Research, 2005, 147(3/4): 342-356.
[9] Allen R S, Hayward W B, Mathews E.A facies model for a submarine volcaniclastic apron: The Miocene Manukau Subgroup, New Zealand[J]. GSA Bulletin, 2007, 119(5/6): 725-742.
[10] Miyabuchi Y, Terada A.Subaqueous geothermal activity revealed by lacustrine sediments of the acidic Nakadake crater lake, Aso Volcano, Japan[J]. Journal of Volcanology and Geothermal Research, 2009, 187(1/2): 140-145.
[11] Perez-Torrado J F, Gimeno D, Aulinas M, et al. Polygonal feeder tubes filled with hydroclasts: A new volcanic lithofacies marking shoreline subaerial-submarine transition[J]. Journal of the Geological Society, 2015, 172(1): 29-43.
[12] Critelli S, Marsaglia M K, Busby J C.Tectonic history of a Jurassic backarc-basin sequence (the Gran Canon Formation, Cedros Island, Mexico), based on compositional modes of tuffaceous deposits[J]. GSA Bulletin, 2002, 114(5): 515-527.
[13] Johns M S, Helmstaedt H H, Kurtis Kyser T.Paleoproterozoic submarine intrabasinal rifting, Baffin Island, Nunavut, Canada: Volcanic structure and geochemistry of the Bravo Lake Formation[J]. Canada Journal of Earth Science, 2006, 43(5):593-616.
[14] Retallack J G.Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland[J]. GSA Bulletin, 2014, 126(5/6): 619-638.
[15] Knott R T, Branney J M, Reichow K M, et al.Mid-Miocene record of large-scale Snake River-type explosive volcanism and associated subsidence on the Yellowstone hotspot track: The Cassia Formation of Idaho, USA[J]. GSA Bulletin, 2016,128(7/8): 1 121-1 146.
[16] Liu Y Q, Jiao X, Li H, et al.Mantle exhalative hydrothermal original dolostones of Permian, in Yuejingou section, Santanghu area, Xinjiang Province[J]. Science in China(Series D), 2012, 55: 183-192.
[17] Liu Yiqun, Zhou Dingwu, Jiao Xin, et al.A new type of sedimentary rocks: Mantle-originated hydroclastites and hydrothermal exhalites Santanghu area, Xinjiang NW China[J]. Acta Sedimentological Sinica, 2013, 31(5): 773-781.
[17] [柳益群, 周鼎武, 焦鑫, 等. 一类新型沉积岩: 地幔热液喷积岩——以中国新疆三塘湖地区为例[J]. 沉积学报, 2013, 31(5): 773-781.]
[18] White D L J, Houghton B F. Primary volcaniclastic rocks[J]. Geology, 2006, 34(8): 677-680.
[19] Kokelaar B P.Magma-water interactions in subaqueous and emergent basaltic volcanism[J]. Bulletin of Volcanology, 1986, 48(5): 275-289.
[20] Wohletz K H.Explosive magma-water interactions: Thermodynamics, explosion mechanisms, and field studies[J]. Bulletin of Volcanology, 1986, 48(5): 245-264.
[21] Thompson Stiegler M, Lowe R D, Byerly R G.Fragmentation and dispersal of komatiitic pyroclasts in the 3.5~3.2 Ga Onverwacht Group, Barberton greenstone belt, South Africa[J]. GSA Bulletin, 2011, 123(5/6): 1 112-1 126.
[22] Seghedi I.Permian rhyolitic volcanism, changing from subaqueous to subaerial in post-Variscan intra-continental Sirinia Basin (SW Romania-Eastern Europe)[J]. Journal of Volcanology and Geothermal Research, 2011, 201(1/4): 312-324.
[23] Marani M P, Gamberi F, Rosi M, et al.Subaqueous density flow processes and deposits of an island volcano landslide (Stromboli Island, Italy)[J]. Sedimentology, 2009, 56(5): 1 488-1 504.
[24] Garcia O M.Turbidites from slope failure on Hawaiian volcanoes[J].Geological Society, London (Special Publications), 1996, 110(1): 281-294.
[25] Mueller W, White D L.Febic fire-fountaining beneath Archean Seas: Pyroclastic deposits of the 1730 Ma Hunter Mine Group, Quebec, Canada[J]. Journal of Volcanology and Geothermal Research, 1992, 54(1/2): 117-134.
[26] Bahlburg H.The geochemistry and provenance of Ordovician turbidites in the Argentine Puna[J]. Geological Society, London (Special Publications), 1998, 142(1): 127-142.
[27] Heiken G, Wohletz K.Fragmentation processes in explosive volcanic eruptions: Sedimentation in Volcanic Settings[J]. SEPM, 1991, 45: 19-26.
[28] Schumacher R, Schmincke H U.Models for the origin of accretionary lapilli[J]. Bulletin of Volcanology, 1995, 56(8): 626-639.
[29] Le Masurier W E. Architeture and evolution of haydrovolcanic delatas in Marie Byrd Land, Antartica[J]. Geological Society, London (Special Publications), 2002, 202(1): 32-39.
[30] Doyle M G, Allen R L.Subsea-floor replacement in volcanic-hosted massive sulfide deposits[J]. Ore Geology Reviews, 2003, 23(3/4): 183-222.
[31] Murtagh R M, White J D L. Pyroclast characteristics of a subaqueous to emergent Surtseyan eruption, Black Point volcano, California[J]. Journal of Volcanology and Geothermal Research, 2013, 267(6): 75-91.
[32] Urabe T, Marumo K.A new model for Kuroko-type deposits of Japan[J]. Episodes, 1991, 14(3): 246-251.
[33] Fouquet Y, Stackelberg U, Charlou J L, et al.Hydrothermal activity in the Lau back-arc basin: Sulfides and water chemistry[J]. Geology, 1991, 19(4): 303-306.
[34] Paulick H, Vanko D A, Yeats C J.Drill core-based facies reconstruction of a deep-marine felsic volcano hosting an active hydrothermal system (Pual Ridge, Papau New Guinea, ODP Leg 193)[J]. Journal of Volcanology and Geothermal Research, 2004, 130(1/2): 31-50.
[35] Kelley D S, Karson J A, Blackman D K, et al.An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N[J]. Nature, 2001, 412(6 843): 145-149.
[36] Charlou J L, Donval J P, Fouguet Y, et al.Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36° 14' N, MAR)[J]. Chemical Geology, 2002, 191(4): 345-359.
[37] Degens E T, Kulbicki G.Hydrothermal origin of metals in some East African rift lakes[J]. Mineralium Deposita, 1973, 8(4): 388-404.
[38] Tiercelin J J, Thouin C, Kalala T, et al.Discovery of sublacustrine hydrothermal activity and associated massive sulfides and hydrocarbons in the north Tanganyika trough, East African rift[J]. Geology, 1989, 17(11): 1 053-1 056.
[39] Anders M H.Constraints on North American Plate velocity from the Yellowstone hotspot deformation field[J]. Nature, 1994, 369(6 475): 53-55.
[40] White D E.Thermal springs and epithermal ore deposits[J]. Economic Geology, 1955, 50: 99-154.
[41] Ridler R H.Analysis of Archean volcanic basins in the Canadian Shield using the exhalite concept[J]. Bulletin of the Canadian Institute of Mining and Metallurgy, 1971, 64(714): 20.
[42] Boström K, Rydell H, Joensuu O.Langban: An exhalative sedimentary deposit?[J].Economic Geology, 1979, 74(5): 1 002-1 011.
[43] Edmond J M, Von Damm K L, Mcduff R E, et al. Chemistry of hot springs on the East Pacific Rise and their effluent dispersal[J]. Nature, 1982, 297(5 863): 187-191.
[44] Shearme S, Cronan D S, Rona P A.Geochemistry of sediments from the TAG hydrothermal field, M.A.R. at latitude 26°N[J]. Marine Geology, 1983, 51(3/4): 269-291.
[45] Hekinian R, Fevrier M, Avedik F, et al.East Pacific Rise near 13°N: Geology of new hydrothermal fields[J]. Science, 1983, 219(4 590): 1 321-1 324.
[46] Rona P A.Hydrothermal mineralization at seafloor spreading centers[J]. Earth-Science Reviews, 1984, 20(1): 1-104.
[47] Barrie C T.Volcanogenic massive sulfide occurrence model[J]. Economic Geology,2012, 107(5),doi:10.2113/congeo.107.5.1073.
[48] Skilling I P, White J D L, McPhie J. Peperite: A review of magma sediment mingling[J]. Journal of Volcanology and Geothermal Research, 2002, 114(1/2): 1-17.
[49] Wohletz K H.Water/magma interaction: Some theory and experiments on peperite formation[J]. Journal of Volcanology and Geothermal Research, 2002, 114(1/2): 19-35.
[50] Brown J D, Bell R B.How do you grade peperites?[J].Journal of Volcanology and Geothermal Research,2007, 159(4): 409-420.
[51] Nemeth K, Pecskay Z, Martin U, et al.Hyaloclastites, peperites and sofy-sediments deformation textures of a shallow subaqueous Miocene rhyolitc dome-crytodome comples, Palhaza, Hungary[J]. Geological Society, London (Special Publications), 2008, 302(1): 52-60.
[52] Ross P S, Peate I U, McClintock M K, et al. Mafic volcaniclastic deposits in flood basalt provinces: A review[J].Journal of Volcanology and Geothermal Research, 2005, 145(3/4): 281-314.
[53] Jerram D A, Single R T R, Hobbs W, et al. Understanding the offshore flood basalt sequence using onshore volcanic facies analogues: An example from the Faroe-Shetland basin[J]. Geological Magazine, 2009, 146(3): 353-367.
[54] Whitham A.The behaviour of subaerially produced pyroclastic flows in a subaqueous environment: Evidence from the Roseau eruption, Dominica, West Indies[J]. Marine Geology, 1989, 86(1): 27-40.
[55] Zheng Rongcai, Wen Huaguo, Fan Mingtao,et al.Lithological characteristics of sublacustine white smoke type exhalative rock of the Xiagou Formation in Jiuxi Basin[J]. Acta Petrologica Sinica, 2006, 22(12): 3 027-3 038.
[55] [郑荣才, 文华国, 范铭涛, 等. 酒西盆地下沟组湖相白烟囱型喷流岩岩石学特征[J]. 岩石学报, 2006, 22(12): 3 027-3 038.]
[56] Jiao Xin, Liu Yiqun, Zhou Dingwu, et al.Progress of research on “white smoke type” exhalative hydrothermal rocks[J]. Advances in Earth Science, 2013, 28(2): 221-232.
[56] [焦鑫, 柳益群, 周鼎武, 等.“白烟型”热液喷流岩研究进展[J]. 地球科学进展,2013, 28(2): 221-232.]
[57] Wan Congli, Jin Qiang, Zhai Qinglong.Effect of volcanicactivity on generation and evolution of hydrocarbon source rocks in Binnan area of Dongying Depression[J]. Journal of the University of Petroleum China(Edition of Natural Science), 2003, 27(3): 17-21.
[57] [万从礼, 金强, 翟庆龙. 东营凹陷滨南地区水下火山喷溢对烃源岩形成及生烃演化的作用[J]. 石油大学学报:自然科学版, 2003, 27(3): 17-21.]
[58] Zhang Yan, Shu Ping, Wang Pujun, et al.Comparison between subaerial and subaqueous volcanic rocks and the reservoir significance—Taking Yingcheng Formation in Songliao Basin as example[J]. Journal of Jilin University (Earth Science Edition), 2007, 37(6): 1 259-1 265.
[58] [张艳, 舒萍, 王璞珺, 等. 陆上与水下喷发火山岩的区别及其对储层的影响——以松辽盆地营城组为例[J]. 吉林大学学报:地球科学版, 2007, 37(6): 1 259-1 265.]
[59] Shan Xuanlong, Li Jiyan, Chen Shumin, et al.Subaquatic volcanic eruptions in continental facies and their influence on high quality source rocks shown by the volcanic rocks of a faulted depression in Northeast China[J]. Science in China(Series D), 2014, 44(12): 2 637-2 644.
[59] [单玄龙, 李吉焱, 陈树民, 等. 陆相水下火山喷发作用及其对优质烃源岩形成的影响: 以松辽盆地徐家围子断陷营城组为例[J]. 中国科学:D辑, 2014, 44(12): 2 637-2 644.]
[60] Houghton B F, Wilson C J N. Avesicularity index for pyroclastic deposits[J]. Bulletin of Volcanology, 1989, 51: 451-462.
[61] White J D L, Riggs N R. Eruptive process, effects and deposits of the 1996 and the ancient basaltic phreatomagmatic eruptions in Karymskoye lake, Kamchatka, Russia[J]. Special Publication Number 30 of the International Association of Sedimentolgists, 2009, 30(4): 35-60.
[62] White V R, Castillo R P, Neal R C, et al.Phreatomagmatic eruptions on the Obtong Java Plateau: Chemical and isotopic relationship to Ontong Java Plateau basalts[J]. Geological Society, 2004, 229(1): 307-323.
[63] Pederson G K, Surlyk F.Dish structures in Eocene volcanic ash layers, Denmark[J].Sedimentology, 1977, 24(4): 581-590.
[64] Trofimovs J, Sparks R S J, Talling P J. Anatomy of a submarine pyroclastic flow and associated turbidity current: July 2003 dome collapse, Soufrière Hills Volcano, Montserrat, West Indies[J]. Sedimentology, 2008, 55(3): 617-634.
[65] Di Capua A, Groppelli G.Emplacement of Pyroclastic Density Currents (PDCs) in a deep-sea environment: The Val d’Aveto Formation case (Northern Apennines, Italy)[J]. Journal of Volcanology and Geothermal Research, 2016, 328(1): 1-8.
[66] Kokelaar B P.Fluidization of wet sediments during the emplacement and cooling various igneous bodies[J]. Journal of Geological Society, London, 1982, 139(1): 21-33.
[67] McClelland E A, Druitt T H. Palaeomagnetic estimates of emplacement temperatures of pyroclastic deposits on Santorini, Greece[J]. Bulletin of Volcanology, 1989, 51(1): 16-27.
[68] Mutti E, Tinterri R, Benevelli G, et al.Deltaic, mixed and turbidite sedimentation of ancient foreland basins[J]. Marine and Petroleum Geology, 2003, 20(6/8): 733-755.
[69] Cas R A F, Wright J V. Subaqueous pyroclastic flows and ignimbrites: An assessment[J]. Bulletin of Volcanology, 1991, 53(5): 357-380.
[70] Sohn Y K, Son M, Jeong J O, et al.Eruption and emplacement of a laterally extensive, crystal-rich, and pumice-free ignimbrite (the Cretaceous Kusandong Tuff, Korea)[J]. Sedimentary Geology, 2009, 220(3/4): 190-203.
[71] Sparks R S J, Sigursdsson H, Carey S N. The entrance of pyroclastic flows into the sea, II. Theoretical considerations on subaqueous emplacement and weldins[J].Journal of Volcanology and Geothermal Research, 1980, 7(1): 87-96.
[72] Wadsworth F B, Vasseur J, von Aulock F W, et al. Nonisothermal viscous sintering of volcanic ash[J]. Journal of Geophysics Research, 2014, 119(12): 8 792-8 804.
[73] Von Aulock F W, Wadsworth F B, Lavallée Y, et al. Sintering of Glass in Hydrous Atmospheres and Its Implication for Welding of Volcanic Deposits[C]. San Francisco: American Geophysical Union, 2014.
[74] Zhu Guohua, Zhang Jie, Yao Genshun, et al.Sedimentary Volcanic Dust Tuff, An important kind of rock storing hydrocarbon resources: Disscusion on the lithology of Middle Permian Lucaogou oil-bearing rocks in the North of Xinjiang[J]. Marine Origin Petroleum Geology, 2014, 19(1): 1-7.
[74] [朱国华, 张杰, 姚根顺, 等. 沉火山尘凝灰岩: 一种赋存油气资源的重要岩类——以新疆北部中二叠统芦草沟组为例[J]. 海相油气地质, 2014, 19(1): 1-7.]
[75] Jin Mengqi.Preliminary Research on Carbonate Exhalative Rocks in Lucaogou Formation in Permian, North of Bogda Mountains, Xinjiang[D]. Xi’an: Northwest University, 2012.
[75] [靳梦琪. 新疆博格达山北缘二叠系芦草沟组碳酸质喷爆岩初步研究[D]. 西安: 西北大学, 2012.]
[76] Folk R L.Petrology of Sedimentary Rocks[M]. Austin, TX:Hemphill’s Book Store, 1968.
[77] Boggs S Jr.Petrology of Sedimentary Rocks[M]. New York:Macmillan Pub. Co, 1992.
[78] Dunham R J.Classification of carbonate rocks according to depositional texture[M]∥Ham W E, ed. Classification of Carbeonate Rocks. A Symposium. Denver: American Association of Petroleum Geologists, 1962: 108-121.
[79] Mount J.Mixed siliciclastic and carbonate sediments: A proposed first-order textural and compositional classification[J]. Sedimentology, 1985, 32(3): 435-442.
[80] Zuffa G G.Hybrid arenites: Their composition and classification[J]. Journal of Sedimentary Petrology, 1980, 50(1): 21-29.
[81] Xie S C, Pancost D R, Wang Y B, et al.Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis[J]. Geology, 2010, 38(5): 447-450.
[82] Brazelton J W, Schrenk O M, Kelley S D, et al.Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem[J]. Applied and Environmental Microbiology, 2006, 72(9): 6 257-6 270.
[83] Niu Yaoling, Gong Hongmei, Wang Xiaohong, et al.Some key problems on the petrogenesis of seafloor basalts, abyssal peridotites and geodynamics—A non-traditional isotope approach[J]. Advances in Earth Science, 2017, 32(2): 111-127.
[83] [牛耀龄, 龚红梅, 王晓红, 等. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.]
[84] Jiao Nianzhi, Li Chao, Wang Xiaoxue.Response and feedback of marine carbon sink to climate change[J]. Advances in Earth Science, 2016, 31(7): 668-681.
[84] [焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.]
Outlines

/