Orginal Article

A Comparative Study of Background Error Covariance Localization in EnKF Data Assimilation

  • Pei Han ,
  • Hong Shu ,
  • Jianhui Xu
Expand
  • 1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079,China
    2.SuZhou Institute of Wuhan University, Suzhou 215123,China

Online published: 2014-10-20

Copyright

地球科学进展 编辑部, 2014, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

In ensemble data assimilation, the estimate of background error covariance is particuarly important. In general, the use of a finite ensemble size for estimating the background error covariance matrix easily introduces spurious correlations, which leads to the underestimation of covariance and filter divergence. Covariance inflation is an empirical method of correcting the underestimation of background error covariance, but it does not help to solve the problem of long-range spurious correlations. Therefore, based on the EnKF scheme, we explored two localization methods to eliminate the spurious correlations, which were the covariance localization method and the local analysis method. We analyzed their impacts on the background error covariance matrix, gain matrix, ensemble transform matrices and data assimilation results. The experimental results have been obtained. That is, the localization method not only can remove the spurious covariance in the background error covariance matrix, but also can increase the rank of the matrix. In a “weak” assimilation, the gain matrix and ensemble transform matrices of two methods are very close, but the differences of the gain matrix and ensemble transform matrices become more evident with the increase of assimilation strength. Under the different strength of assimilation, two localization methods have their own characteristics, and relatively the covariance localization method has stronger robustness on the update of ensemble mean and ensemble anomalies. This study is very helpful for the fine analysis and estimate of the background error covariance.

Cite this article

Pei Han , Hong Shu , Jianhui Xu . A Comparative Study of Background Error Covariance Localization in EnKF Data Assimilation[J]. Advances in Earth Science, 2014 , 29(10) : 1175 -1185 . DOI: 10.11867/j.issn.1001-8166.2014.10.1175

References

[1] Ma Jianwen, Qin Sixian. The research status review of data assimilation algorithm[J]. Advances in Earth Science, 2012, 27(7): 747-757.
[1] [马建文,秦思娴.数据同化算法研究现状综述[J].地球科学进展,2012, 27(7): 747-757.]
[2] Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research: Oceans (1978-2012), 1994, 99(C5): 10143-10162.
[3] Xiong Chunhui, Zhang Lifeng, Guan Jiping, et al. Development and application of ensemble-variational data assimilation methods[J]. Advances in Earth Science, 2013,28(6):648-656.
[3] [熊春晖, 张立凤, 关吉平, 等. 集合—变分数据同化方法的发展与应用[J]. 地球科学进展, 2013, 28(6): 648-656.]
[4] Petrie R. Localization in the Ensemble Kalman Filter[D]. London: University of Reading, 2008.
[5] Liu Yanhua, Zhang Shuwen, Mao Lu, et al. An evaluation of simulated and estimated land surface states with two different models[J]. Advances in Earth Science, 2013,28(8):913-922.
[5] [刘彦华, 张述文, 毛璐, 等. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.]
[6] Hamill T M, Whitaker J S, Snyder C. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter[J]. Monthly Weather Review, 2001, 129(11): 2776-2790.
[7] Anderson J L, Anderson S L. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts[J]. Monthly Weather Review, 1999, 127(12): 2741-2758.
[8] Anderson J L. An ensemble adjustment Kalman filter for data assimilation[J]. Monthly Weather Review, 2001, 129(12): 2884-2903.
[9] Sakov P, Bertino L. Relation between two common localisation methods for the EnKF[J]. Computational Geosciences, 2011, 15(2): 225-237.
[10] Oke P R, Sakov P, Corney S P. Impacts of localisation in the EnKF and EnOI: Experiments with a small model[J]. Ocean Dynamics, 2007, 57(1): 32-45.
[11] Evensen G. Data Assimilation: The Ensemble Kalman Filter (2nd)[M]. Dordrecht: Springer, 2009.
[12] Schur I. Bemerkungen zur theorie der beschrnkten bilinearformen mit unendlich vielen vernderlichen[J]. Journal für die Reine und Angewante Mathematiek, 1911,140: 1-28.
[13] Burgers G, Van Leeuwen P J, Evensen G. Analysis scheme in the ensemble Kalman filter[J]. Monthly Weather Review, 1998, 126(6):1719-1724.
[14] Whitaker J S, Hamill T M. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review, 2002, 130(7):1913-1924.
[15] Sakov P, Oke P R. A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters[J]. Tellus A, 2008, 60(2): 361-371.
[16] Bishop C H, Etherton B J, Majumdar S J. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects[J]. Monthly Weather Review, 2001, 129(3): 420-436.
[17] Horn R A, Johnson C R. Matrix Analysis[M]. New York: Cambridge University Press, 1985.
[18] Evensen G. Sampling strategies and square root analysis schemes for the EnKF[J]. Ocean Dynamics, 2004, 54(6): 539-560.
[19] Gaspari G, Cohn S E. Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(554): 723-757.
Outlines

/