Soil Moisture Dynamic Simulation of Different Underlying Surface in the Hai River Basin
Received date: 2012-02-02
Revised date: 2012-05-22
Online published: 2012-07-10
A vertical soil moisture(θ) based unsaturated soil hydrodynamic numerical model was developed and used to simulate soil moisture movement at Miyun (orchard woodland), Daxing (Suburban farmland), Guantao (plain farmland) sites, which represent different underlying surface types in the Hai River Basin. The model based on one dimensional Richards’ equation (hereinafter referred to as the RE model) and the top boundary was input ground-measured rainfall and evapotranspiration data. Soil moisture during different growth stages was numerically simulated based on the fully implicit Finite Differential Method to obtain time series of soil moisture profile. Soil moisture simulated by mature HYDRUS-1D software and observed at the sites was used for crossvalidation and direct verification on the RE model simulation results, respectively. The result showed that the RE model was able to simulate the soil water dynamic changes of different underlying surfaces in Hai River Basin, with root mean square error (RMSE) compared to the observed soil moisture at three sites being 0.0313, 0.0359 and 0.0409 cm3/cm3, respectively. Compared to the simulation results of HYDRUS-1D software (whose RMSE were 0.0376, 0.0647 and 0.0467 cm3/cm3, respectively), the soil water simulated by RE model had higher precision which also showed the RE model reliability. The spatial and temporal variation of soil moisture and its impact factors were discussed. For the case of Daxing site,we analyzed the impact of plow on soil moisture modeling by optimizing the RE model parameters, under which consideration improved the simulation accuracy of the RE model was improved.
Zhu Zhongli , Lin Liuying , Xu Tongren . Soil Moisture Dynamic Simulation of Different Underlying Surface in the Hai River Basin[J]. Advances in Earth Science, 2012 , 27(7) : 778 -787 . DOI: 10.11867/j.issn.1001-8166.2012.07.0778
[1]Stekauerova V, Nagy V, Kotorova D. Soil water regime of agricultural field and forest ecosystems[J]. Biologia, 2006, 61(19):300-304.
[2]Richards L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5):318-333.
[3]Downer C W, Ogden F L. Appropriate vertical discretization of Richards’ equation for two-dimensional watershed-scale modeling[J]. Hydrological Processes, 2004, 18(1): 1-22.
[4]Van Dam J C, Feddes R A. Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation[J]. Journal of Hydrology, 2000, 233(1/4): 72-85.
[5]Pan L, Warrick A W, Wierenga P J. Finite elements methods for simulation water flow in variably saturated porous media: Numerical oscillation and mass distributed schemes [J]. Water Resources Research, 1996, 32(6): 1 883-1 889.
[6]Simunek J, Sejna M, Saito H, et al. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Version 4.0x, Hydrus Series 3[Z]. Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA, 2008.
[7]Hou Xiandong, Wang Zhirong, Zhang Jianfeng. Review on the numerical simulation of movement of unsaturated soil water[J]. Journal of Water Resources & Water Engineering, 2006, (4): 41-46.[侯宪东, 汪志荣, 张建丰. 非饱和土壤水分运动数值模拟研究综述[J]. 水资源与水工程学报, 2006, (4):41-46.]
[8]Brooks R H, Corey A T. Hydraulic properties of porous media[J]. Colorado States University,1964,3(3):27.
[9]Van Genuchten M Th. A close-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
[10]Arya L M, Paris J F. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of America Journal, 1981, 45(6): 1 023-1 030.
[11]Liu Jianli, Xu Shaohui, Liu Hui. A review of development in estimating soil water retention characteristics from soil data[J]. Journal of Hydraulic Engineering, 2004, (2): 68-78.[刘建立, 徐绍辉, 刘慧. 估计土壤水分特征曲线的间接方法研究进展[J].水利学报,2004,(2):68-78.]
[12]Rawls W J, Gish T J, Brakensiek D L. Estimating soil water retention from soil physical properties and characteristics[J]. Advances of Soil Science, 1991, 16: 213-234.
[13]Pachepsky Y A, Rawls W J, Lin H S. Hydropedology and pedotransfer functions[J]. Geoderma, 2006, 131(3/4): 308-316.
[14]Song Xiaoyu, Li Yajuan, Jiang Jun, et al. Progress and perspective of spatial variability study on unsaturated soil water movement parameters[J]. Advances in Earth Science, 2008,23(6): 613-618.[宋孝玉,李亚娟,蒋俊,等. 非饱和土壤水分运动参数空间变异性研究进展与展望[J]. 地球科学进展,2008,23(6): 613-618.]
[15]Vereecken H, Maes J, Feyen J, et al. Estimating the soil water moisture retention characteristic from texture, bulk density, and carbon contenl[J]. Soil Science, 1989,148: 389-403.
[16]Wostan J H M, Lilly A, Ncmes A, et al. Development and use of adatabase of hydraulic properties of European soils[J]. Geoderma,1999,90(3/4): 169-185.
[17]Schaap M G, Leij F J, Van Genuchten M Th. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions[J]. Journal of Hydrology, 2001, 251(3/4): 163-176.
[18]Van Genuchten M Th, Leij F J, Yates S R. The RETC Code for Quantifying the Hydraulic Functions for Unsaturated Soils[M]. California: U.S. Salinity Laboratory, 1999.
[19]Vereecken H, Weynants M, Javaux M, et al. Using pedotransfer functions to estimate the Van Genuchten-Mualem soil hydraulic properties: A review[J]. Vadose Zone Journal, 2010, 9(4): 795-820.
[20]Xia Jun, Zhai Jinliang, Zhan Chesheng. Several reflection on the development and research of water resources in China[J]. Advances in Earth Science, 2011, 26(9): 65-75.[夏军, 翟金良, 占车生. 我国水资源研究与发展的若干思考[J]. 地球科学进展,2011, 26(9): 65-75.]
[21]Bai Jie, Liu Shaomin, Ding Xiaoping, et al. A study of the processing method of large aperture scintillometer observation data[J]. Advances in Earth Science, 2010, 25(11): 1 187-1 198.[白洁,刘绍民,丁晓萍,等. 海河流域不同下垫面上大孔径闪烁仪观测显热通量的时空特征分析[J]. 地球科学进展,2010, 25(11): 1 187-1 198.]
[22]Wang Jian, Cai Huanjie, Chen Feng, et al. Experimental study on evapotranspiration and soil evaporation in summer maize field[J]. Journal of Hydraulic Engineering,2004,12(11): 1-7.[王健,蔡焕杰,陈凤,等. 夏玉米田蒸发蒸腾量与棵间蒸发的试验研究[J]. 水利学报,2004,12(11): 1-7.]
[23]Hoffman G J, Van Genuchten M Th. Soil properties and efficient water use: Water management for salinity control[C]∥Taylor H M, Jordan W R, Sinclair T R, eds. Limitations and Efficient Water Use in Crop Production.American Society of Agronomy, Madison, WI,1983:73-85.
[24]Stumpp C, Engelhardt S, Hofmann M, et al. Evaluation of pedotransfer functions for estimating soil hydraulic properties of prevalent soils in a catchment of the Bavarian Alps[J]. European Journal of Forest Research, 2009, 128(6): 609-620.
[25]Shang Songhao, Mao Xiaomin, Lei Zhidong, et al. Soil Moisture Dynamics Simulation Model and Its Application[M]. Beijing: Science Press, 2009.[尚松浩,毛晓敏,雷志栋,等. 土壤水分动态模拟模型及其应用[M]. 北京:科学出版社, 2009.]
[26]Kang Shaozhong, Liu Xiaoming, Xiong Yunzhang. Theory of Water Transport in Soil-Plant-Atmosphere Continuum and Its Applicatition[M]. Beijing: Water Power Press, 1994. [康绍忠,刘晓明,熊运章.土壤—植物—大气连续体水分传输理论及其应用[M].北京:水利电力出版社, 1994.]
[27]Gribb M M, Forkutsaa I, Hansen A, et al. The effect of various soil hydraulic property estimates on soil moisture simulations[J]. Vadose Zone Journal, 2009, 8(2): 321-331.
[28]Schaap M G, Van Genuchten M Th. A modified Mualem-Van Genuchten formulation for improved description of the hydraulic conductivity near saturation[J]. Vadose Zone Journal, 2005, 5(1): 27-34.
[29]Downer C W, Ogden F L. Prediction of runoff and soil moistures at the watershed scale: Effects of model complexity and parameter assignment[J]. Water Resources Research, 2003, 39(3): 1-13.
/
〈 |
|
〉 |